Skip to main content

Advertisement

Log in

Exogenous Zinc Forms Counteract NaCl-Induced Damage by Regulating the Antioxidant System, Osmotic Adjustment Substances, and Ions in Canola (Brassica napus L. cv. Pactol) Plants

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Salinity is the principal natural obstacles for sustainable agriculture, adversely impacting 30% of the world’s irrigated land, resulting in food insecurity, particularly in arid and semi-arid areas. Zinc has several functions in plants; nevertheless, the promising roles of nano-zinc oxide particle in plants under salinity stress are not clear. The current study aims to investigate the roles of zinc (water, 75 mg L−1 zinc sulfate (Zn), and 10 mg L−1 zinc oxide nanoparticle (ZNP)) on the mitigation of NaCl stress (6000 mg L−1) on morpho-physiological attributes and yield of canola plants. Salinity exhibited a substantial reduction in canola plant growth, enhanced photosynthetic pigment degradation, and decreased nutrient concentrations. A decrease in the overall yield and a decrease in various individual components were considerably stimulated by zinc application under non-salinized and salinized conditions. Salinity caused a visible increase in membrane permeability (MP%), malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations. Interestingly, zinc application significantly decreased MP%, MDA, and H2O2 concentrations by the upregulation of antioxidant enzymes (superoxide dismutase, catalase, peroxidase) and levels of non-enzymatic antioxidants (ascorbic, carotenoids, and total soluble phenolic compounds). Furthermore, zinc application also enhanced osmoregulation by increasing proline and total soluble carbohydrates accumulation, as well as increased nitrogen, potassium, and phosphorus in the plant tissues in correlation with a decline in sodium and chloride contents. Zinc’s, especially ZNP, role in the mitigation the negative effects of salinity on canola growth and yield may be connected with the upregulating oxidative defense system and osmolyte synthesis as well as ionic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel Latif AAH, Abu Alhmad MF, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinustermis) plants. J Plant Growth Regul 36:60–70. https://doi.org/10.1007/s00344-016-9618-x

    Article  CAS  Google Scholar 

  • Abedini M (2016) Physiological responses of wheat plant to salinity under different concentrations of Zn. Acta Biologica Szegediensis 60(1):9–16

    Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P, Ashraf M (2018) Mitigation of sodium chloride toxicity in Solanum lycopersicum L., by supplementation of jasmonic acid and nitric oxide. J Plant Interact 13(1):64–72

    Article  CAS  Google Scholar 

  • Alamri SA, Siddiqui MH, Al-Khaishany MY, Khan MNA, Alakeel KA (2018) Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermo tolerance in Vicia faba L. Environ Exp Bot 161:290–302. https://doi.org/10.1016/j.envexpbot.2018.06.012

    Article  CAS  Google Scholar 

  • AOAC (1990) Official methods of analysis, association of official analytical chemists, 15th edn. AOAC, Washington, DC

    Google Scholar 

  • Arbona V, Flors V, Jacas J, Garcia-Agustin P, Gomez-Cadwenas A (2003) Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol 44:388–394

    Article  CAS  PubMed  Google Scholar 

  • Bala R, Kalia A, Dhaliwal SS (2019) Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice. J Soil Sci Plant Nutr 19:379–389. https://doi.org/10.1007/s42729-019-00040-z

    Article  CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Li Y, Liu B, Kong F, Tran LSP (2018) Adaptive mechanisms of soybean grown on salt-affected soils. Land Degrad Dev 29:1054–1064

    Article  Google Scholar 

  • Carillo P, Raimondi G, Kyriacou MC, Pannico A, El-Nakhel C, Cirillo V, Colla G, De Pascale S, Rouphael Y (2019) Morpho-physiological and homeostatic adaptive responses triggered by omeprazole enhance lettuce tolerance to salt stress. Sci Hortic 249:22–30. https://doi.org/10.1016/j.scienta.2019.01.038

    Article  CAS  Google Scholar 

  • Chaudhary MT, Wainwright SJ, Merrett MJ (1996) Comparative NaCl tolerance of Lucerne plants regenerated from salt-selected suspension cultures. Plant Sci 114(2):221–232

    Article  CAS  Google Scholar 

  • Chrysargyris A, Xylia P, Botsaris G, Tzortzakis N (2017) Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels. Ind Crop Prod 103:202–212. https://doi.org/10.1016/j.indcrop.2017.04.010

    Article  CAS  Google Scholar 

  • Chrysargyris A, Michailidi E, Tzortzakis N (2018) Physiological and biochemical responses of Lavandula angustifolia to salinity under mineral foliar application. Front Plant Sci 9:489. https://doi.org/10.3389/fpls.2018.00489

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper TG (1977) The tools of biochemistry. A Wiley-Interscience Pub. John Wiley and Sons, New York

    Google Scholar 

  • Daneshbakhsh B, Khoshgoftarmanesh AH, Shariatmadari H, Cakmak I (2013) Effect of zinc nutrition on salinity-induced oxidative damages in wheat genotypes differing in zinc deficiency tolerance. Acta Physiol Plant 35:881–889

    Article  CAS  Google Scholar 

  • El-Beltagi HES, Mohamed AA (2010) Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars. Fats Oil 61(2):143–150

    Google Scholar 

  • Ellegard L, Andersson H, Bosaeus I (2005) Rapeseed oil, olive oil, plant sterols, and cholesterol metabolism: an ileostomy study. Eur J Clin Nutr 59:1374–1378

    Article  CAS  PubMed  Google Scholar 

  • Farhoudi R, Modhej A, Afrous A (2015) Effect of salt stress on physiological and morphological parameters of rapeseed cultivars. J Sci Res Dev 2:111–117

    Google Scholar 

  • Farouk S, Arafa Sally A (2018) Mitigation of salinity stress in canola plants by sodium nitroprusside application. Span J Agric Res 16(3):e0802. https://doi.org/10.5424/sjar/2018163-13252

    Article  Google Scholar 

  • Fatma M, Asgher M, Masood A, Khan NA (2014) Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot 107:55–63

    Article  CAS  Google Scholar 

  • Gao W, Feng Z, Bai Q, He J, Wang Y (2019) Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress. Int J Mol Sci 20:1176. https://doi.org/10.3390/ijms20051176

    Article  CAS  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goncalves JF, Becker AG, Crgnelutti D, Tabaldi LA, Pereira LB, Battisti V, Spanevello RM, Schetinger MRC (2007) Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Braz J Plant Physiol 13(3):223–232

    Article  Google Scholar 

  • Grobas S, Mendez J, Lazaros R, Blas CD, Mateos GG, De BC (2001) Influence of source of fat added to diet on performance and fatty acid composition of egg yolks of two strains of laying hens. Poult Sci 80:1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R (2013) Reactive oxygen species and photosynthesis. In: Ahmad P (ed) Oxidative damage to plants. Elsevier Inc, New York, pp 1–63

    Google Scholar 

  • Haripriya P, Stella PM, Anusuya S (2018) Foliar spray of zinc oxide nanoparticles improves salt tolerance in finger millet crops under glasshouse condition. SCIOL Biotechnol 1:20–29

    Google Scholar 

  • He L, He T, Farrar S, Ji LB, Liu TY, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553

    Article  PubMed  Google Scholar 

  • Hidoto L, Walelign W, Hussein M, Taran B (2017) Effects of zinc application strategy on zinc content and productivity of chickpea grown under zinc deficient soils. J Soil Sci Plant Nutr 17(1):112–126

    CAS  Google Scholar 

  • Hussein MM, Abou-Baker NH (2018) The contribution of nano-zinc to alleviate salinity stress on cotton plants. R Soc Open Sci 5:171809. https://doi.org/10.1098/rsos.171809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob OO, Francis NI (2015) Effect of different levels of NaCl and Na2SO4 salinity on dry matter and ionic content of cowpea (Vigna unguiculata L. ). Afr J Agric Res 10:1239–1243

    Google Scholar 

  • Kataria S, Baghel L, Jain M, Guruprasad KN (2019) Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatal Agric Biotechnol 18:101090. https://doi.org/10.1016/j.bcab.2019.101090

    Article  Google Scholar 

  • Khatun S, Flowers TJ (1995) Effects of salinity on seed set in rice. Plant Cell Environ 18(1):61–67

    Article  Google Scholar 

  • Kulbat K (2016) The role of phenolic compounds in plant resistance. Biotechnol Food Sci 80:97–108

    Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1985) Determination of total carotenoids and chlorophylls A and B of leaf in different solvents. Biochem Soc Trans 11:591–592

    Article  Google Scholar 

  • Liu D, Kong DD, Fu XK, Ali B, Xu L, Zhou WJ (2016) Influence of exogenous 5-aminolevulinic acid on chlorophyll synthesis and related gene expression in oilseed rape de-etiolated cotyledons under water-deficit stress. Photosynthetica 54:468–474

    Article  CAS  Google Scholar 

  • Marschner H (2012) Mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  • Mehrabani LV, Hassanpouraghdam MB, Shamsi-Khotab T (2018) The effects of common and nano-zinc foliar application on the alleviation of salinity stress in Rosmarinus officinalis L. Acta Sci Pol Hortorum Cultus 17(6):65–73. https://doi.org/10.24326/asphc.2018.6.7

    Article  Google Scholar 

  • Motsara MR, Roy RN (2008) Guide to laboratory establishment for plant nutrient analysis; FAO fertilizer and plant Nutrition Bulletin No, 19

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5:2229–2232

    Google Scholar 

  • Nair R, Varghese S, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nano-particulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nguyen HM, Sako K, Matsui A, Suzuki Y, Mostofa MG, Van Ha C, Tanaka M, Tran LSP, Habu Y, Seki M (2017) Ethanol enhances high-salinity stress tolerance by detoxifying reactive oxygen species in Arabidopsis thaliana and rice. Front Plant Sci 8:1001. https://doi.org/10.3389/fpls.2017.01001

    Article  PubMed  PubMed Central  Google Scholar 

  • Oidaira H, Sano SQ, Koshiba T, Ushimaru T (2000) Enhancement of antioxidative enzyme activities in chilled rice seedlings. J Plant Physiol 156:811–813

    Article  CAS  Google Scholar 

  • Oteiza PI (2012) Zinc and the modulation of redox homeostasis. Free Radic Biol Med 53:1748–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey N, Gupta M, Sharma CP (1995) SEM studies on Zn deficient pollen and stigma of Vicia faba. Phytomorphology 45:169–173

    Google Scholar 

  • Pandey N, Pathak GC, Sharma CP (2009) Impairment in reproductive development is a major factor limiting seed yield of black gram under zinc deficiency. Biol Plant 53:723–727

    Article  CAS  Google Scholar 

  • Pauletto P, Puato M, Angeli MT, Pessina AC, Munhambo A, Bittolo-Bon G, Galli C (1996) Blood pressure, serum lipids, and fatty acids in populations on a lake-fish diet or on a vegetarian diet in Tanzania. Lipids 31:309–312

    Article  Google Scholar 

  • Sadasivam S, Manickam S (1996) Biochemical methods. New Age Inter, Limited Publication, India

    Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005) Change of antioxidative enzymes and MDA among 10 wheat genotypes at maturation stage under soil water deficits. Colloids Surf B Biointerfaces 45(2):7–13

    Google Scholar 

  • Shi J, Gao L, Zuo J, Wang Q, Wang Q, Fan L (2016) Exogenous sodium nitroprusside treatment of broccoli florets extends shelf life enhances antioxidant enzyme activity and inhibits chlorophyll-degradation. Postharvest Biol Technol 116:98–104

    Article  CAS  Google Scholar 

  • Siddiqui MN, Mostofa MG, Akter MM, Srivastava AK, Sayed MA, Hasan MS, Tran LSP (2017) Impact of salt-induced toxicity on growth and yield-potential of local wheat cultivars: oxidative stress and ion toxicity are among the major determinants of salt tolerant capacity. Chemosphere 187:385–394

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A, Ali HM, Alaraidh IA, Alsahli AA (2019) Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. Int J Mol Sci 20:353. https://doi.org/10.3390/ijms20020353

    Article  CAS  PubMed Central  Google Scholar 

  • Silva AL, Pinheiro DT, Borges EEL, Silva LJ, Dias DCFS (2019) Effect of cyanide by sodium nitroprusside (SNP) application on germination, antioxidative system and lipid peroxidation of Sennamacranthera seeds under saline stress. J Seed Sci 41(1):086–096. https://doi.org/10.1590/2317-1545v41n1213725

    Article  Google Scholar 

  • Singh P, Shukla AK, Behera SK, Tiwari PK (2019) Zinc application enhances superoxide dismutase and carbonic anhydrase activities in zinc-efficient and zinc-inefficient wheat genotypes. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-019-00038-7

  • Song C, Liu MY, Meng JF, Chi M, Xi ZM, Zhang ZW (2015) Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil. Molecules 20:2536–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storey JB (2007) Zinc. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press, Taylor & Francis Group, Boca Raton, pp 411–436

    Google Scholar 

  • Tarchoune I, Sgherri C, Izzo R, Lachaal M, Navari-Izzo F, Ouerghi Z (2012) Changes in the antioxidative systems of Ocimum basilicum L. (cv. Fine) under different sodium salts. Acta Physiol Plant 34:1873–1881. https://doi.org/10.1007/s11738-012-0985-z

    Article  CAS  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftarmanesh A (2016) Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress. J Agric Sci Technol 18:1013–1025

    Google Scholar 

  • Turan S, Tripathy BC (2015) Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiol Plant 153:477–491

    Article  CAS  PubMed  Google Scholar 

  • Tzortzakis NG, Tzanakaki K, Economakis C (2011) Effect of origanum oil and vinegar on the maintenance of postharvest quality of tomato. Food Nutr Sci 2:974–982. https://doi.org/10.4236/fns.2011.29132

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Walker KC, Booth EJ (2007) Agricultural aspects of rape and other Brassica products. Eur J Lipid Sci Technol 103:441–446

    Article  Google Scholar 

  • Wasaya A, Shabir MS, Hussain M, Ansar M, Aziz A, Hassan W, Ahmad I (2017) Foliar application of zinc and boron improved the productivity and net returns of maize grown under rainfed conditions of Pothwar plateau. J Soil Sci Plant Nutr 17(1):33–45

    CAS  Google Scholar 

  • Watanabe K, Tanaka T, Hotta Y, Kuramochi H, Takeuchi Y (2000) Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul32:99–103

  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Badakhshan H (2014) Effects of zinc application on growth, absorption and distribution of mineral nutrients under salinity stress in soybean (Glycine max L.). J Plant Nutr 37:2255–2269

    Article  CAS  Google Scholar 

  • Zargari A (2001) Medicinal plants, vol 1, 5th edn. Tehran University Publications, Tehran

    Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Alexander W. Geddie (North Carolina State University; MS Biological and Agricultural Engineering, 2018, USA) and Dr. Maged Elkahky (Agricultural officer of Food and Agriculture Organization of the United Nations), for their helpful insights and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in collaboration between the authors. Author SF designed the study, performed the statistical analysis, wrote the protocol, wrote the first draft of the manuscript, conducted all biochemical studies, and reviewed the final manuscript; author SA participated in designing the study, managed the analyses of the study, and managed the literature searches. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saad Farouk.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farouk, S., Al-Amri, S.M. Exogenous Zinc Forms Counteract NaCl-Induced Damage by Regulating the Antioxidant System, Osmotic Adjustment Substances, and Ions in Canola (Brassica napus L. cv. Pactol) Plants. J Soil Sci Plant Nutr 19, 887–899 (2019). https://doi.org/10.1007/s42729-019-00087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-019-00087-y

Keywords

Navigation