Skip to main content
Log in

Forecasting potential risk for development of spiromesifen resistance in Tetranychus urticae (Koch): its genetics and cross-resistance

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Tetranychus urticae (Koch) (Acari: Tetrancyhidae) is a notorious economically important pest due to its polyphagous behavior and strong capability to develop resistance, consequently, makes the chemicals applied as ineffective, in a short time. Considering these issues and to make chemical control effective, resistance risk, inheritance and cross-resistance to spiromesifen was studied in T. urticae. The spiromesifen resistant strain (SPIRO-SEL) showed 92.42-fold resistance after 20 laboratory selections compared with the Lab-colony. Reciprocal crosses (F1 and F1’) showed no difference in concentration–mortality responses and exhibited a similar degree of dominance with DLC values of 0.57 and 0.70 for F1 and F1’, respectively. The chi-square test of monogenic model showed significant differences between the observed and expected mortalities at more than half of the tested concentrations in the backcross which suggested that spiromesifen resistance is polygenic. Spiromesifen resistance in T. urticae was inherited as autosomal, incompletely dominant, and multigene. The SPIRO-SEL developed no cross-resistance to chlorfenapyr and very low cross-resistance to chlorpyrifos and spirotetramat. Realized heritability analysis showed that under a selection intensity of 10 to 90% the generations required to rise 10-fold spiromesifen resistance were 14 to 2, respectively. Herein, from a practical perspective, our investigations of spiromesifen resistance risk, inheritance and its cross-resistance with other tested pesticides could be favourable to provide sufficient insight for future implication of these results in devising a resistance management program against T. urticae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afzal MBS, Shad SA, Abbas N, Ayyaz M, Walker WB (2015) Cross-resistance, the stability of acetamiprid resistance and its effect on the biological parameters of cotton mealybug, Phenacoccus solenopsis (Homoptera: Pseudococcidae), in Pakistan. Pest Manage Sci 71:151–158

    Article  CAS  Google Scholar 

  • Alam M, Shah RM, Shad SA, Binyameen M (2020) Fitness cost, realized heritability and stability of resistance to spiromesifen in house fly, Musca domestica L.(Diptera: Muscidae). Pestic Biochem Physiol 168:104648

    Article  CAS  PubMed  Google Scholar 

  • Annonymous (2021) Pesticide registered list-Agri Punjab. http://www.agripunjab.gov.pk/system/files/PESTICIDE%20REGISTERED%20LIST%20-%20Form%201. (Retrieved March 26 2021)

  • ARPD (2020) Arthropod Pesticide Resistance Database. https://www.pesticideresistance.org/search.php. (Retrieved December 29 2021)

  • Ay R, Kara FE (2011a) Toxicity, inheritance and biochemistry of clofentezine resistance in Tetranychus urticae. Insect Sci 18:503–511

    Article  CAS  Google Scholar 

  • Ay R, Kara FE (2011b) Toxicity, inheritance of fenpyroximate resistance, and detoxification-enzyme levels in a laboratory-selected fenpyroximate-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Crop Protect 30:605–610

    Article  CAS  Google Scholar 

  • Ay R, Yorulmaz S (2010) Inheritance and detoxification enzyme levels in Tetranychus urticae Koch (Acari: Tetranychidae) strain selected with chlorpyrifos. J Pest Sci 83:85–93

    Article  Google Scholar 

  • Badieinia F, Khajehali J, Nauen R, Dermauw W, Van Leeuwen T (2020) Metabolic mechanisms of resistance to spirodiclofen and spiromesifen in iranian populations of Panonychus ulmi. Crop Protect 134:105166

    Article  CAS  Google Scholar 

  • Banazeer A, Shad SA, Afzal MBS (2020a) Laboratory induced bifenthrin resistance selection in Oxycarenus hyalinipennis (Costa)(Hemiptera: Lygaeidae): Stability, cross-resistance, dominance and effects on biological fitness. Crop Protect 132:105–107

    Article  Google Scholar 

  • Banazeer A, Afzal MBS, Shad SA (2020b) Characterization of dimethoate resistance in Oxycarenus hyalinipennis (Costa): resistance selection, cross-resistance to three insecticides and mode of inheritance. Phytoparasitica 48:841–849

    Article  CAS  Google Scholar 

  • Barnes E, Dobson R, Barger I (1995) Worm control and anthelmintic resistance: adventures with a model. Parasitol Today 11:56–63

    Article  CAS  PubMed  Google Scholar 

  • Bensoussan N, Santamaria ME, Zhurov V, Diaz I, Grbic M, Grbic V (2016) Plant-herbivore interaction: dissection of the cellular pattern of Tetranychus urticae feeding on the host plant. Front Plant Sci 7:1105

    Article  PubMed  PubMed Central  Google Scholar 

  • Bielza P, Fernández E, Grávalos C, Izquierdo J (2009) Testing for non-target effects of spiromesifen on Eretmocerus mundus and Orius laevigatus under greenhouse conditions. Biocontrol 54:229

    Article  Google Scholar 

  • Bielza P, Moreno I, Belando A, Grávalos C, Izquierdo J, Nauen R (2019) Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest Manage Sci 75:45–52

    Article  CAS  Google Scholar 

  • Bourguet D, Genissel A, Raymond M (2000) Insecticide resistance and dominance levels. J Econ Entomol 93:1588–1595

    Article  CAS  PubMed  Google Scholar 

  • Bretschneider T, Benet-Buchholz J, Fischer R, Nauen R (2003) Spirodiclofen and spiromesifen–novel acaricidal and insecticidal tetronic acid derivatives with a new mode of action. Chimia 57:697–701

    Article  CAS  Google Scholar 

  • Bretschneider T, Fischer R, Nauen R, Lamberth C, Dinges J (2012) Tetronic acid insecticides and acaricides inhibiting acetyl-CoA carboxylase. In: Lamberth C, Dinges J (eds) Bioactive heterocyclic compound classes: agrochemicals. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  • Cheng X, Umina PA, Lee SF, Hoffmann AA (2019) Pyrethroid resistance in the pest mite, Halotydeus destructor: dominance patterns and a new method for resistance screening. Pestic Biochem Physiol 159:9–16

    Article  CAS  PubMed  Google Scholar 

  • Curtis C, Cook L, Wood R (1978) Selection for and against insecticide resistance and possible methods of inhibiting the evolution of resistance in mosquitoes. Ecol Entomol 3:273–287

    Article  Google Scholar 

  • Demaeght P, Dermauw W, Tsakireli D, Khajehali J, Nauen R, Tirry L, Vontas J, Lümmen P, Van Leeuwen T (2013) Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. Insect Biochem Mol Biol 43:544–554

    Article  CAS  PubMed  Google Scholar 

  • Dermauw W, Ilias A, Riga M, Tsagkarakou A, Grbic M, Tirry L, Van Leeuwen T, Vontas J (2012) The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochem Mol Biol 42:455–465

    Article  CAS  PubMed  Google Scholar 

  • Ejaz M, Afzal MBS, Shabbir G, Serrão JE, Shad SA, Muhammad W (2017) Laboratory selection of chlorpyrifos resistance in an invasive pest, Phenacoccus solenopsis (Homoptera: Pseudococcidae): cross-resistance, stability and fitness cost. Pestic Biochem Physiol 137:8–14

    Article  CAS  PubMed  Google Scholar 

  • Esteves Filho AB, de Oliveira JV, Torres JB, Matos CHC (2013) Toxicity of spiromesifen and natural acaricides to Tetranychus urticae koch and compatibility with Phytoseiulus macropilis (banks). Semina Cienc Agrar 34:2675–2686

    Article  Google Scholar 

  • Feng K, Wen X, He X, Wei P, Shi L, Yang Y, He L (2018) Resistant inheritance and cross-resistance of cyflumetofen in Tetranychus cinnabarinus (Boisduval). Pestic Biochem Physiol 148:28–33

    Article  CAS  PubMed  Google Scholar 

  • Ferreira CB, Andrade FH, Rodrigues AR, Siqueira HA, Gondim MG Jr (2015) Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance. Crop Protect 67:77–83

    Article  CAS  Google Scholar 

  • Finney D (1971) Probit analysis, 3rd edn. pp. Cambridge University Press, London, p 333

    Google Scholar 

  • Fotoukkiaii SM (2020) Genetic basis of acaricide resistance: identification and characterization of the risk and mechanisms of resistance to bifenazate, acequinocyl, and the novel acaricide pyflubumide. Tetranychus urticae. Universiteit van Amsterdam, New York

    Google Scholar 

  • Fu B, Li Q, Qiu H, Tang L, Zeng D, Liu K, Gao Y (2018) Resistance development, stability, cross resistance potential, biological fitness and biochemical mechanisms of spinetoram resistance in Thrips hawaiiensis (Thysanoptera: Thripidae). Pest Manage Sci 74:1564–1574

    Article  CAS  Google Scholar 

  • Fujii T, Sanada-Morimura S, Oe T, Ide M, Van Thanh D, Van Chien H, Van Tuong P, Loc PM, Cuong LQ, Liu Z-W (2020) Long-term field insecticide susceptibility data and laboratory experiments reveal evidence for cross resistance to other neonicotinoids in the imidacloprid-resistant brown planthopper Nilaparvata lugens. Pest Manage Sci 76:480–486

    Article  CAS  Google Scholar 

  • He L, Gao X, Wang J, Zhao Z, Liu N (2009) Genetic analysis of abamectin resistance in Tetranychus cinnabarinus. Pestic Biochem Physiol 95:147–151

    Article  CAS  Google Scholar 

  • Heikal HM, Bhullar MB, Kaur P (2020) Acaricide resistance in field collected two-spotted spider mite, Tetranychus urticae from Okra in Punjab. Indian J Ecol 47:590–593

    Google Scholar 

  • Herron GA, Rophail J (1993) Genetics of hexythiazox resistance in two spotted spider mite. Tetranychus urticae Koch Exp Appl Acarol 17:423–431

    Article  Google Scholar 

  • IRAC (2021) Mode of Action Classification Scheme. https://irac-online.org. (Retrieved March 07 2021)

  • Karatolos N, Williamson M, Denholm I, Gorman K, Ffrench-Constant R, Nauen R (2012) Resistance to spiromesifen in Trialeurodes vaporariorum is associated with a single amino acid replacement in its target enzyme acetyl-coenzyme A carboxylase. Insect Mol Biol 21:327–334

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Bhullar MB (2019) Acaricide resistance in Tetranychus urticae on cucumber (Cucumis sativus) under protected cultivation. Indian J Agric Sci 89:94–97

    Google Scholar 

  • Khadri S, Srinivasa N (2018) Resistance of two spotted spider mite, Tetranychus urticae Koch to major acaricides and its consequences on biological characteristics of mites. Mysore J Agricultural Sci 52:179–185

    Google Scholar 

  • Kiritani K (2006) Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul Ecol 48:5–12

    Article  Google Scholar 

  • Kramer T, Nauen R (2011) Monitoring of spirodiclofen susceptibility in field populations of european red mites, Panonychus ulmi (Koch)(Acari: Tetranychidae), and the cross resistance pattern of a laboratory selected strain. Pest Manage Sci 67:1285–1293

    Article  CAS  Google Scholar 

  • Kwon DH, Seong GM, Kang TJ, Lee SH (2010) Multiple resistance mechanisms to abamectin in the two-spotted spider mite. J Asia-Pacif Entomol 13:229–232

    Article  CAS  Google Scholar 

  • LeOra S (2002) Polo, plus, a user’s guide to Probit or Logic Analysis. LeOra Software, Berkeley, CA, USA

    Google Scholar 

  • Liao X, Mao K, Ali E, Jin R, Li Z, Li W, Li J, Wan H (2019) Inheritance and fitness costs of sulfoxaflor resistance in Nilaparvata lugens (Stal). Pest Manage Sci 75:2981–2988

    Article  CAS  Google Scholar 

  • Lin H, Zhimo Z, Xinping D, Jinjun W, Huai L (2003) Resistance risk assessment: realized heritability of resistance to methrin, abamectin, pyridaben and their mixtures in the spider mite, Tetranychus cinnabarinus. Int J Pest Manage 49:271–274

    Article  Google Scholar 

  • Litchfield JJ, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  PubMed  Google Scholar 

  • Liu Z, Zhou L, Yao Q, Liu Y, Bi X, Huang J (2020) Laboratory selection, resistance risk assessment, multi-resistance, and management of Tetranychus urticae Koch to bifenthrin, bifenazate and cyflumetofen on cowpea. Pest Manage Sci 76:1912–1919

    Article  CAS  Google Scholar 

  • McKenzie JA, Parker A, Yen J (1992) Polygenic and single gene responses to selection for resistance to diazinon in Lucilia cuprina. Genetics 130:613–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migeon A, Nouguier E, Dorkeld F (2010) Spider Mites Web: A comprehensive database for the Tetranychidae. Available online: https://www1.montpellier.inra.fr/CBGP/spmweb/notespecies.php?id=872#hosts

  • Nicastro RL, Sato ME, Da Silva MZ (2010) Milbemectin resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability and cross-resistance to abamectin. Exp Appl Acarol 50:231–241

    Article  CAS  PubMed  Google Scholar 

  • Nicastro RL, Sato ME, da Silva MZ (2011) Fitness costs associated with milbemectin resistance in the two-spotted spider mite tetranychus urticae. Int J Pest Manage 57:223–228

    Article  Google Scholar 

  • Nicastro RL, Sato ME, Arthur V, Da Silva MZ (2013) Chlorfenapyr resistance in the spider mite tetranychus urticae: stability, cross-resistance and monitoring of resistance. Phytoparasitica 41:503–513

    Article  CAS  Google Scholar 

  • Park Y-L, Lee J-H (2002) Leaf cell and tissue damage of cucumber caused by twospotted spider mite (Acari: Tetranychidae). J Econ Entomol 95:952–957

    Article  PubMed  Google Scholar 

  • Rauch N, Nauen R (2002) Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pestic Biochem Physiol 74:91–101

    Article  CAS  Google Scholar 

  • Rauch N, Nauen R (2003) Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pestic Biochem Physiol 74:91–101

    Article  Google Scholar 

  • Riga M, Tsakireli D, Ilias A, Morou E, Myridakis A, Stephanou E, Nauen R, Dermauw W, Van Leeuwen T, Paine M (2014) Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect Biochem Mol Biol 46:43–53

    Article  CAS  PubMed  Google Scholar 

  • Saeed R, Abbas N (2020) Realized heritability, inheritance and cross-resistance patterns in imidacloprid-resistant strain of Dysdercus koenigii (Fabricius)(Hemiptera: Pyrrhocoridae). Pest Manage Sci 76:2645–2652

    Article  CAS  Google Scholar 

  • Saeed R, Abbas N, Mehmood Z (2020) Emamectin benzoate resistance risk assessment in Dysdercus koenigii: cross-resistance and inheritance patterns. Crop Protect 130:105069

    Article  CAS  Google Scholar 

  • Santamaria ME, Arnaiz A, Rosa-Diaz I, González-Melendi P, Romero-Hernandez G, Ojeda-Martinez DA, Garcia A, Contreras E, Martinez M, Diaz I (2020) Plant defenses against Tetranychus urticae: mind the gaps. Plants 9:464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarbaz S, Goldasteh S, Zamani AA, Solymannejadiyan E, Vafaei Shoushtari R (2017) Side effects of spiromesifen and spirodiclofen on life table parameters of the predatory mite, Neoseiulus californicus McGregor (Acari: Phytoseiidae). Int J Acarol 43:380–386

    Article  Google Scholar 

  • Sato ME, Miyata T, Da Silva M, Raga A, De Souza Filho MF (2004) Selections for fenpyroximate resistance and susceptibility, and inheritance, cross-resistance and stability of fenpyroximate resistance in Tetranychus urticae Koch (Acari: Tetranychidae). Appl Entomol Zool 39:293–302

    Article  CAS  Google Scholar 

  • Sato ME, Silva MZd, Raga A, Souza Filho MFd (2005) Abamectin resistance in Tetranychus urticae Koch (Acari: Tetranychidae): selection, cross-resistance and stability of resistance. Neotrop Entomol 34:991–998

    Article  CAS  Google Scholar 

  • Sato ME, Veronez B, Stocco RS, Queiroz MCV, Gallego R (2016) Spiromesifen resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability, and monitoring. Crop Protect 89:278–283

    Article  CAS  Google Scholar 

  • Sharma RK, Bhullar MB (2018) Status of acaricide resistance in field collected two-spotted spider mite, Tetranychus urticae Koch from vegetable growing areas of Punjab, India. J Entomol Zool Stud 6:328–332

    Google Scholar 

  • Shih C-iT, Poe SL, Cromroy HL (1976) Biology, life table, and intrinsic rate of increase of Tetranychus urticae. Ann Entomol Soc Am 69:362–364

    Article  Google Scholar 

  • Silva JE, Ribeiro LMdS, Vinasco N, Guedes RNC, Siqueira HÁA (2019) Field-evolved resistance to chlorantraniliprole in the tomato pinworm Tuta absoluta: inheritance, cross-resistance profile, and metabolism. J Pest Sci 92:1421–1431

    Article  Google Scholar 

  • Sokal R, Rohlf F (1981) Biometry, 2nd edn. Freeman, New york

    Google Scholar 

  • Stone B (1968) A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull WHO 38:325–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stumpf N, Nauen R (2001) Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 94:1577–1583

    Article  CAS  PubMed  Google Scholar 

  • Sundukov O, Tulayeva I, Zubanov YA (2016) Inheritance of acaricide resistance in inbred strains of the two-spotted spider mite. Russian J Genetics: Appl Res 6:207–214

    Article  CAS  Google Scholar 

  • Susurluk H, Gurkan MO (2020) Mode of inheritance and biochemical mechanisms underlying lambda-cyhalothrin and bifenthrin resistance in the laboratory-selected two-spotted spider mite, Tetranychus urticae. Crop Protect 137:105280

    Article  CAS  Google Scholar 

  • Tabashnik BE (1992) Resistance risk assessment: realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 85:1551–1559

    Article  Google Scholar 

  • Tabashnik BE, McGaughey WH (1994) Resistance risk assessment for single and multiple insecticides: responses of indian meal moth (Lepidoptera: Pyralidae) to Bacillus thuringiensis. J Econ Entomol 87:834–841

    Article  Google Scholar 

  • Tehri K (2014) A review on reproductive strategies in two spotted spider mite, Tetranychus Urticae Koch 1836 (Acari: Tetranychidae). J Entomol Zool Stud 2:35–39

    Google Scholar 

  • Tsagkarakou A, Van Leeuwen T, Khajehali J, Ilias A, Grispou M, Williamson M, Tirry L, Vontas J (2009) Identification of pyrethroid resistance associated mutations in the para sodium channel of the two spotted spider mite tetranychus urticae (Acari: Tetranychidae). Insect Mol Biol 18:583–593

    Article  CAS  PubMed  Google Scholar 

  • Van Leeuwen T, Stillatus V, Tirry L (2004) Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 32:249–261

    Article  PubMed  Google Scholar 

  • Van Leeuwen T, Tirry L, Nauen R (2006) Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. Insect Biochem Mol Biol 36:869–877

    Article  PubMed  Google Scholar 

  • Van Leeuwen T, Vontas J, Tsagkarakou A, Tirry L (2009) Mechanisms of acaricide resistance in the two-spotted spider mite tetranychus urticae. Biorational control of arthropod pests. Springer, The Netherland, pp 347–393

    Google Scholar 

  • Van Pottelberge S, Van Leeuwen T, Khajehali J, Tirry L (2009) Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Manage Sci 65:358–366

    Article  Google Scholar 

  • Wang R, Liu S, Qu C, Li K, Luo C, Wang Z (2016) Monitoring of Bemisia tabaci resistance to spirotetramat and cross-resistance in Hubei Province. Acta Phytophylacica Sinica 43:117–122

    Google Scholar 

  • Wazir S, Shad SA (2021) Inheritance mode and metabolic mechanism of the sulfoximine insecticide sulfoxaflor resistance in Oxycarenus hyalinipennis (Costa). Pest Manage Sci 77:2547–2556

    Article  CAS  Google Scholar 

  • Wu M, Adesanya AW, Morales MA, Walsh DB, Lavine LC, Lavine MD, Zhu F (2019) Multiple acaricide resistance and underlying mechanisms in Tetranychus urticae on hops. J Pest Sci 92:543–555

    Article  Google Scholar 

  • Ximenez-Embun MG, Castanera P, Ortego F (2017) Drought stress in tomato increases the performance of adapted and non-adapted strains of Tetranychus urticae. J Insect Physiol 96:73–81

    Article  CAS  PubMed  Google Scholar 

  • Xinpin HLZZD, Huai WJL (2002) Realized heritabilities of resistance to fenpropathrin and abamectin in Tetranychus cinnabarinus (Boiduval). J Plant Prot 4

  • Xu D, He Y, Zhang Y, Xie W, Wu Q, Wang S (2018) Status of pesticide resistance and associated mutations in the two-spotted spider mite, Tetranychus urticae, in China. Pestic Biochem Physiol 150:89–96

    Article  CAS  PubMed  Google Scholar 

  • Yorulmaz S, Ay R (2009) Multiple resistance, detoxifying enzyme activity, and inheritance of abamectin resistance in Tetranychus urticae Koch (Acarina: Tetranychidae). Turk J Agric For 33:393–402

    CAS  Google Scholar 

  • Yorulmaz Salman S, Sarıtas E (2014) Acequinocyl resistance in Tetranychus urticae Koch (Acari: Tetranychidae): inheritance, synergists, cross-resistance and biochemical resistance mechanisms. Int J Acarol 40:428–435

    Article  Google Scholar 

  • Yorulmaz-Salman S, Ay R (2014) Determination of the inheritance, cross-resistance and detoxifying enzyme levels of a laboratory-selected, spiromesifen-resistant population of the predatory mite neoseiulus californicus (Acari: Phytoseiidae). Pest Manage Sci 70:819–826

    Article  CAS  Google Scholar 

  • Yu D-Y, Wang C-F, Yu Y, Huang Y-Q, Yao J-A, Hu J-F (2011) Laboratory selection for spirodiclofen resistance and cross-resistance in Panonychus citri. Afr J Biotechnol 10:3424–3429

    Article  CAS  Google Scholar 

  • Zhang Y-X, Chen X, Wang J-P, Zhang Z-Q, Wei H, Yu H-Y, Zheng H-K, Chen Y, Zhang L-S, Lin J-Z (2019) Genomic insights into mite phylogeny, fitness, development, and reproduction. BMC Genomics 20:1–22

    Article  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to Dr. Abdul Waheed, Department of Livestock and Poultry Production, Faculty of Veterinary Science, Bahauddin Zakariya University Multan, Pakistan for helpful suggestions and technical improvements in the manuscript. Authors are also grateful to two annonymous reviewer’s for improvment of english language in this paper and made it interesting for readership.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Kamran or Sarfraz Ali Shad.

Ethics declarations

Disclosure statement

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamran, M., Sarwar, Z.M., Umer, A. et al. Forecasting potential risk for development of spiromesifen resistance in Tetranychus urticae (Koch): its genetics and cross-resistance. Int J Trop Insect Sci 43, 1771–1782 (2023). https://doi.org/10.1007/s42690-023-01075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-01075-7

Keywords

Navigation