Skip to main content
Log in

Wild cocoons, a reservoir of calcium oxalate; function and constraints

  • Mini-review
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Calcium oxalate (CaOx) is a minor constituent that is predominant in wild silk cocoons. While CaOx is abundantly accumulated in wild silkworm cocoons, domesticated silkworms have acquired and acclimated to less CaOx crystal deposition. Although CaOx is thought to be counterproductive in the cocoon, it plays a vital role in the protection, water resistance, CO2 gating, reflection, thermal insulation, etc. of the cocoon. In this review, recent advances in our understanding of CaOx function in wild silk cocoons, CaOx biosynthesis in host plants, and CaOx transport and deposition to cocoons are discussed. The constraints of CaOx in reeling wild silk cocoons are also discussed with the aspect of demineralization for commercial exploitation of wild silk fibres. This review presents a summary of reliable findings as well as potential research avenues for biologists interested in the commercialization of wild cocoons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Algfri SK, Alshakka MA, Munaiem RT, Ockba MS (2015) Anatomical and phytochemical studies of the leaves of acacia nilotica subspecies kraussiana. Int J Pharm Phytopharmacol Res 4(6):310–314

    CAS  Google Scholar 

  • Bačić T, Miličić D (1985) Contribution to the Leaf anatomy of Quercus ilex L. Acta Bot Croat 44(1):23–31

    Google Scholar 

  • Boulet-Audet M, Vollrath F, Holland C (2015) Identification and classification of silks using infrared spectroscopy. J Exp Biol 218(19):3138–3149

    PubMed  PubMed Central  Google Scholar 

  • Chandra Shekar MN, Majhi SK, Thangavelu K (1996) The cooking performance of tamarind for Tasar Cocoons. J Text Inst 87(2):396–397. https://doi.org/10.1080/00405009608659091

    Article  Google Scholar 

  • Chen F, Porter D, Vollrath F (2012) Structure and physical properties of silkworm cocoons. J R Soc Interface 9(74):2299–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Ye A, Wu X, Qu Z, Xu S, Sima Y, Wang Y, He R, Jin F, Zhan P, Cao J (2022) Combined analysis of silk synthesis and hemolymph amino acid metabolism reveal key roles for glycine in increasing silkworm silk yields. Int J Biol Macromol 209:1760–1770

    Article  CAS  PubMed  Google Scholar 

  • Choudhury M, Devi D (2018) Demineralization of cocoons of Antheraea assamensis Helfer (muga) for effective reeling. J Text Inst 109(4):552–559

    Article  CAS  Google Scholar 

  • Choudhury M, Ramakrishnan E, Devi D (2019) Identification and characterization of Methyl Isoeugenol compound from the Golden Yellow Hued Muga Silk Fiber of India. J Nat Fibers 0:0

    Google Scholar 

  • Çölgeçen H, Kaplan A, Büyükkartal HN (2009) Calcium oxalate crystals in leaves of Quercus cerris L. and Q. ilex L. Bangladesh J Bot 38(1):103–105

    Article  Google Scholar 

  • Desai D, Chanda S (2014) Pharmacognostic study and physicochemical analysis of leaves of Terminalia arjuna. Pharmacogn J (India) 6(6):15–19

    Article  CAS  Google Scholar 

  • Duarte MR, Menarim DO (2006) Leaf and stem anatomical morpho-diagnosis of Camellia sinensis (L.) Kuntze, Theaceae. Revista Brasileira de Farmacognosia 16(4):545–551

    Article  Google Scholar 

  • Eminagaoglu Ö, Ozcan M (2018) Morphological and anatomical studies of the newly recorded Rhus chinensis Mill.(Anacardiaceae) from Turkey. Bangladesh J Plant Taxon 25(1):71–78

    Article  Google Scholar 

  • Franceschi VR (1989) Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148:130–137

    Article  Google Scholar 

  • Franceschi V (2001) Calcium oxalate in plants. Trends Plant Sci 6(7):331

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR, Horner HT (1980) Calcium oxalate crystals in plants. Bot Rev 46(4):361–427

    Article  CAS  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  PubMed  Google Scholar 

  • Freddi G, Svilokos B, Ishikawa A, H. and, Tsukada M (1993) Chemical composition and physical properties of gonometa rufobrunnae silk. J Appl Polym Sci 48(1):99–106

    Article  CAS  Google Scholar 

  • Gandhi D, Mehta P (2014) Pharmacognostical study and quality control parameters of Dillenia indica Linn. And Dillenia pentagyna Roxb.: a boon of ethnomedicinal herbs of India. Int J Pharmacogn Phytochem Res 6:573–579

    Google Scholar 

  • Gheysens T, Collins A, Raina S, Vollrath F, Knight DP (2011) Demineralization enables reeling of wild silkmoth cocoons. Biomacromolecules 12(6):2257–2266

    Article  CAS  PubMed  Google Scholar 

  • Ho MP, Lau KT, Wang H (2011) Effect of degumming on tussah silk fibre. In Proceedings of the 18th International Conference on Composite Materials (ICCM 2011) (pp. 1–6). Korean Society for Composite Materials

  • Ibrahim JA, Egharevba HO, Nnamdi RA, Kunle OF (2015) Comparative pharmacognostic and phytochemical analysis of Ziziphus spina-christi (L.) Desf. And Ziziphus abyssinica Hochst. Ex A. Rich. Int J Pharmacognos Phytochem Res 7(6):1160–1166

    Google Scholar 

  • Ishikawa H The mass production of wild silk from Japanese oak silkmoth (Antheraea yamamai) cocoons March 2019 Shinshu University Doctoral Dissertation thesis

  • Ishikawa H, Kajiura Z (2019) Reeling and fiber property of japanese oak silkmoth cocoon treated with proteinase. J Silk Sci Technol Japan 27:5–14

    Google Scholar 

  • Kalita T, Dutta K (2020) Characterisation of cocoon of different population of Antheraea assamensis (Lepidoptera: Saturniidae). Orient Insects 1–17

  • Katayama H, Fujibayashi Y, Nagaoka S, Sugimura Y (2007) Cell wall sheath surrounding calcium oxalate crystals in mulberry idioblasts. Protoplasma 231(3–4):245–248

    Article  CAS  PubMed  Google Scholar 

  • Kaur J (2014) Silk cocoon: structure and properties (No. Ph. D.). Deakin University

  • Kaur J, Rajkhowa R, Tsuzuki T, Wang X (2015) Crystals in Antheraea assamensis silkworm cocoon: their removal, recovery and roles. Mater Des 88:236–244

    Article  CAS  Google Scholar 

  • Kaur J, Rajkhowa R, Tsuzuki T, Millington K, Zhang J, Wang X (2013) Photoprotection by silk cocoons. Biomacromolecules 14(10):3660–3667

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Inoue TA, Nakamura M (2014) Synergistic defensive function of Raphides and protease through the needle effect. PLoS ONE 9(3):e91341

    Article  PubMed  PubMed Central  Google Scholar 

  • Lersten NR, Horner HT (2000) Calcium oxalate crystal types and trends in their distribution patterns in leaves of Prunus (Rosaceae: Prunoideae). Plant Syst Evol 224(1–2):83–96

    Article  CAS  Google Scholar 

  • Macnish AJ, Irving DE, Joyce DC, Vithanage V, Wearing AH et al (2003) Identification of intracellular calcium oxalate crystals in Chamelaucium uncinatum (Myrtaceae). Aust J Bot 51:565–572

    Article  CAS  Google Scholar 

  • Mane PC, Qurehi NM, Shinde MD, Jadkar SR, Amalnerkar DP, Chaudhari RD (2017) Physico-chemical studies on raw and processed moth caterpillar silks from the mega-biodicersity hotspots of India. Curr Sci 113(5):919

    Article  CAS  Google Scholar 

  • Mondal M, Trivedy K, Nirmal KS (2007) The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.,-a review. Caspian J Env Sci 5(2):63–76

    Google Scholar 

  • Nakata PA, McConn MM (2002) Sequential subtractive approach facilitates identification of differentially expressed genes. Plant Physiol Biochem 40(4):307–312

    Article  CAS  Google Scholar 

  • Nakata PA (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci 164(6):901–909

    Article  CAS  Google Scholar 

  • Ohnishi E, Takahashi SY, Sonobe H, Hayashi T (1968) Crystals from Cocoons of Malacosoma neustria testacea. Science 160(3829):783–784

    Article  CAS  PubMed  Google Scholar 

  • Periyanayagam K, Sasikala T, Karthikeyan V, Jegadeesh S, Gracelet RJ (2013) Pharmacognostical and phytochemical studies on the leaves of Anacardium occidentale Linn. World J Pharm Res 2(1):41–48

    Google Scholar 

  • Pierantoni M, Tenne R, Rephael B, Brumfeld V, van Casteren A, Kupczik K, Oron D, Addadi L, Weiner S (2018) Mineral deposits in Ficus leaves: morphologies and locations in relation to function. Plant Physiol 176(2):1751–1763

    Article  CAS  PubMed  Google Scholar 

  • Rakholiya K, Chanda S (2012) Pharmacognostic, physicochemical and phytochemical investigation of Mangifera indica L. var. Kesar leaf. Asian Pac J Trop Biomed 2(2):S680–S684

    Article  Google Scholar 

  • Ravindran PN, Nirmal-Babu K, Shylaja M (eds) (2003) Cinnamon and cassia: the genus Cinnamomum. CRC press

  • Roy M, Meena SK, Kusurkar TS, Singh SK, Sethy NK, Bhargava K, Sarkar S, Das M (2012) Carbon dioxide gating in silk cocoon. Biointerphases 7(45):1–4

    Google Scholar 

  • Sargut ST, Sayan PERVİZ, Kıran B (2010) Influence of essential and non-essential amino acids on calcium oxalate crystallization. Cryst Res Technol 45(1):31–38

    Article  CAS  Google Scholar 

  • Satyanarayana T, Gangarao B (2013) Pharmacognostical and phytochemical studies of annona reticulata linn International. Int J Curr Pharm Res 3(2):477–482

    Google Scholar 

  • Scott FM (1941) Distribution of calcium oxalate crystals in Ricinus communis in relation to tissue differentiation and presence of other ergastic substances. Bot gaz 103(2):225–246

    Article  CAS  Google Scholar 

  • Sing LR, Devi YR, Devi SK (2003) In their article enzymological characterization of pineapple extract for potential application in oak tasar {Antheraeaproylei J.) silk cocoon cooking and reeling in the electronic J. Biotechnol 6(3):35–44

    Google Scholar 

  • Sugimura Y, Uemura I, Furusawa T (2001) Developmental process of mulberry idioblast in relation to calcium deposition. J Insect Biotechnol Sericology 70(1):63–68

    CAS  Google Scholar 

  • Teigler DJ, Arnott HJ (1972) Crystal development in the malpighian tubules of Bombyx mori (L.). Tissue Cell 4(1):173–185

    Article  CAS  PubMed  Google Scholar 

  • Thitikornpong W, Phadungcharoen T, Sukrong S (2011) Pharmacognostic evaluations of Lagerstroemia speciosa leaves. J Med Plant Res 8:1330–1337

    Google Scholar 

  • Toma C, Ifrim C, Gatu I (2015) some aspects concerning the anatomy of the offshoot of acer l. species from the collection of the botanical garden iassy. Analele Stiintifice ale Universitatii” Al. I. Cuza” din Iasi 61(1/2):27

  • Tooulakou G, Giannopoulos A, Nikolopoulos D, Bresta P, Dotsika E, Orkoula MG, Kontoyannis CG, Fasseas C, Liakopoulos G, Klapa MI, Karabourniotis G (2016) Alarm photosynthesis: calcium oxalate crystals as an internal CO2 source in plants. Plant Physiol 171(4):2577–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulachan B, Meena SK, Rai RK, Mallick C, Kusurkar TS, Teotia AK, Sethy NK, Bhargava K, Bhattacharya S, Kumar A, Sharma RK (2014) Electricity from the silk cocoon membrane. Sci Rep 4:5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volk GM, Lynch-Holm VJ, Kostman TA, Goss LJ, Franceschi VR (2002) The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol 4:34–45

    Article  CAS  Google Scholar 

  • Webb MA (1999) Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11(4):751–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyman AJ, Webb MA (2007) April. Calcium oxalate accumulation in Malpighian tubules of silkworm (Bombyx mori). In AIP Conference Proceedings, vol. 900, No. 1. American Institute of Physics, pp 407–411

  • Zhang J, Rajkhowa R, Li JL, Liu XY, Wang XG (2013) Silkworm cocoon as natural material and structure for thermal insulation. Mater Design 49:842–849

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank their Ph.D guide Dr. R.Siva, Professor, School of BioSciences and Biotechnology, VIT University, Vellore, Tamilnadu, India and Muga Eri Silkworm Seed Organisation, Central Silk Board, Guwahati, Assam, India for their constant support and motivation.

Funding

No funding was received from any organisation.

Author information

Authors and Affiliations

Authors

Contributions

HH conceived the depicted idea. SM contributed to design and implementation of review. HH and SM equally contributed for the review.

Corresponding author

Correspondence to Hridya Hemachandran.

Ethics declarations

Ethics approval

This article does not contain any studies with human and animal subjects.

Consent to participate

Consent to participation was obtained from all individual included in this article.

Consent for publication

Informed consent was obtained from all individual to publish this article.

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemachandran, H., Mohan, S. Wild cocoons, a reservoir of calcium oxalate; function and constraints. Int J Trop Insect Sci 43, 313–319 (2023). https://doi.org/10.1007/s42690-023-00961-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-00961-4

Keywords

Navigation