Skip to main content

Advertisement

Log in

Entomofauna in Egyptian saltwater habitats

  • Mini-review
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The entomofaunas of salty Egyptian environments are reviewed in the present paper according to the available data. Most saltwater habitats were poor with insect fauna. Class Insecta was represented in seven lakes and completely disappeared in two hypersaline lakes, Bitter and Temsah. Chironomid larvae were the most abundant insects in the seven lakes followed by the mosquito larvae, especially in Suez Canal and Wadi El-Rayan. Other aquatic insects include Odonata, Hemiptera, Coleoptera, Trichoptera, and Collembola were represented as extremely low or completely absent. The richness of insect diversity was observed in Burullus and Wadi El-Rayan Lakes as well as the Red Sea coast (swamps and mangroves). It has also been observed that the physical and chemical characteristics of these habitats were changed due to the environmental and climatic changes. Consequently, led to changes in the insect species and other communities. Generally, the data and the studies of insect fauna in Egyptian saltwater are very poor. Also, the taxonomic identification to the level of genus and species is almost non-existent. This paper recommended more studies of insect fauna in these environments with more precise classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel Aziz NE (1987) Limnological studies of the zooplankton and benthos in the main basin of Maryout Lake. M. Sc. Thesis Faculty of Science. Alexandria. University (Egypt)

  • Abdel Aziz NE, Aboul Ezz SM (2004) The Structure of zooplankton community in lake Maryout, Alexandria Egypt. Egypt J Aquat Res 30(A):160–170

    Google Scholar 

  • Abdel Gawad SS et al (2012) Benthic invertebrate fauna in Ashtoum El Gamil protected area (Lake Manzala) Egypt. Egypt J Aquat Biol Fish 16(4):91–101

    Article  Google Scholar 

  • Abdel Gawad SS (2019) Using benthic macroinvertebrates as indicators for assessment the water quality in River Nile Egypt. Egypt J Basic Appl Sci 6(1):206–219

    Article  Google Scholar 

  • Abdel Malek SA, Ishak MM (1980) Some ecological aspects of Lake Qarun, Fayum, Egypt. Part II: production of plankton and benthic organisms. Hydrobiol 75:201–208

    Article  Google Scholar 

  • Abdel Naieem IM et al (2007) Temporal variability of benthic macrofauna of the lower lake at Wadi El-Rayan, EL-Fayoum Egypt. Egypt J Exp Biol (Zoo) 3:261–269

    Google Scholar 

  • Aboul Ezz MS (2008) Zooplankton Distribution in Lake Edku During 2003–2005. Egyp J Aquat Res 34(3):127–142

    Google Scholar 

  • Aboul EzzSM, Abdel Aziz NE (1999) Benthic Fauna of Maryout Lake. Bull Nat Inst Ocean Fish 225:181–202

    Google Scholar 

  • Aboul Ezz SM, Soliman AM (2000) Zooplankton community in Lake Edku. Egypt J Aquat Res 26:71–99

    Google Scholar 

  • Armitage PD, Pinder LC, Cranston P (1995) The Chironomidae: Biology and ecology of non-biting midges. Chapman & Hall, London

    Book  Google Scholar 

  • Barbour MT et al (1999) Rapid bioassessment protocols for use in streams and Wadable Rivers: Periphyton. Benthic Macroinvertebrates and Fish. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Belal AAM, Dar MA (2020) Distribution and biodiversity of macro-benthic fauna in relation to some heavy metals at the Great Bitter Lakes, Suez Canal. Egypt Egypt J Aquat Res 46:49–56

    Article  Google Scholar 

  • Belal AAM, El-Sawy MA, Dar MA (2016) The effect of water quality on the distribution of macro-benthic fauna in Western Lagoon and Timsah Lake Egypt. Egypt J Aquat Res 42:437–448

    Article  Google Scholar 

  • Beltagy AI (1985) Sequences and consequences of pollution in northern Egyptian lakes, Lake Burullus. Bull Nat Inst Ocean Fish 11:73–97

    Google Scholar 

  • Bradley TJ (1994) The role of physiological capacity, morphology and phylogeny in determining habitat use in mosquitoes. In: Wainwright PC, Reilly SM (eds) Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, IL, pp 303–318

    Google Scholar 

  • Bradley TJ (2009) Animal osmoregulation. Oxford University Press, New York

    Google Scholar 

  • Brooks SJ, Birks HJB (2004) The dynamics of Chironomidae (Insecta: Diptera) assemblages in response to environmental change during the past 700 years on Svalbard. J Paleolimnol 31:483–498

    Article  Google Scholar 

  • Broza M et al (2005) Adult non-biting midges: possible windborne carriers of Vibrio cholerae non-O1 non-O139. Environ Microbiol 7:576–585

    Article  PubMed  Google Scholar 

  • Cheng L (1976) Marine insects. North-Holland Publ. Co., Amsterdam

    Google Scholar 

  • Choi J (2004) Biomarkers in Environmental Monitoring and Its Application In Chironomus Spp. In: Hong SK. et al. (eds) Ecological Issues in a Changing World. Springer, Dordrecht. Edited by Sun-Kee Hong, John A. Lee, Byung-Sun Ihm, Almo Farina, Yowhan Son, Eun-Shik Kim and Jae Chun Choe

  • Clements WH, Otis JT, Wissing TE (1994) Accumulation and food chain transfer of fluoranthene and benzo[a]pyrene in Chironomus riparius and Lepomis macrochirus. Arch Environ Con Tox 26:261–266

    Article  CAS  Google Scholar 

  • Courtney GW, Merritt RW (2008) Aquatic Diptera: Part one: Larvae of aquatic Diptera. In: Merritt RW, Cummins KW, Berg MB (eds) An introduction to the aquatic insects of north America, 4th edn. Kendall/Hunt Publishing, Dubuque, Iowa, pp 687–722

    Google Scholar 

  • Cranston RPS (1995) The Chironomidae: biology and ecology of non-biting midges to In: Armitage, P.D., Cranston P.S. & Pinder L.C.V., ed., Chapman & Hall, London

  • Da Rocha JRM et al (2010) Insects as indicators of environmental changing and pollution: A review of appropriate species and their monitoring. Arevista Holos Environ 10(2):250–262

    Article  Google Scholar 

  • Dardir AA, Abd El Tawab A (2005) Usage lake Quaroun water to cultivation of Dunaliella Salina As Biotechnology In Fayoum, Egypt. Egyp J Aquat Res, 31, Special Issue, 341–351

  • El-Badry AA, Khalifa MM (2017) Geochemical assessment of pollution at Manzala Lake, Egypt: Special mention to environmental and health effects of arsenic, selenium, tin and antimony. J Appl Sci 17:72–80

    Article  CAS  Google Scholar 

  • El-Bassat RA (2008) Composition and abundance of the zooplankton community in the Bitter lakes, Egypt, in relation to environmental factors Link. Afr J Aquat Sci 33:233–240

    Article  Google Scholar 

  • El-Hefni A et al (2020) Hyperspectral based assessment of mosquito breeding water in Suez Canal zone, Egypt. In: Elbeih S., Negm A., Kostianoy A. (eds) Environmental Remote Sensing in Egypt. Springer Geophysics. Springer, Cham

  • El-Kafrawy SB, Bek MA, Negm AM (2018) An overview of the Egyptian Northern Coastal Lakes Part I. Springer, Cham, pp 3–1

    Google Scholar 

  • El-Samad LM et al (2019) Aquatic beetles Cercyon unipunctatus as bioindicators of pollution in Lake Edku and Mariut. Egypt Environ Sci Poll Res 26:6557–6564

    Article  CAS  Google Scholar 

  • El-Serehy HA et al (2018) Aquatic ecosystem health and trophic status classification of the Bitter Lakes along the main connecting link between the Red Sea and the Mediterranean. Saudi J Biol Sci 25:204–212

    Article  PubMed  Google Scholar 

  • El-Shabrawy GM (1993) A study on zooplankton and bottom fauna in Lake Wadi El Rayan. Thesis, Zagazig University, M. Sci

    Google Scholar 

  • El-Shabrawy GM (1996) Limnological studies on zooplankton and benthos in the second Lake Wadi El Rayan “El-Fayum, Egypt. Ph. D. Thesis, El-Mansoura University

  • El-Shabrawy GM (2007) Community structure and abundance of macrobenthos in Wadi El-Rayan Lakes (El-Fayoum, Egypt). Afr J Biol Sci 3(1):113–125

    Google Scholar 

  • El-Shabrawy GM (2011) Environmental assessment of macrobenthos assemblage in Manzala Lagoon, Egypt. In: Paul E. Schmidt River Deltas Types Structures & Ecology Nova Science Publishers, New York, ISBN

  • El-Shabrawy GM and Goher ME (2011) Limnology of the River Nile Encyclopedia of life support systems (EOLSS), developed under the auspices of UNESCO. Oxford, United Kingdom: Eolss Publishers [http://www.eolss.net]

  • El-Shabrawy GM, Dumont HJ (2009) The Toshka Lakes, in, The Nile, Monog Biol, 89(III), 157–162

  • El-Shabrawy GM, Rizk ET (2005) Long-Term changes and community structure of Macrobenthic Arthropoda And Mollusca In Bardawil Lagoon. Thalassia Salentina 28:17–30

    Google Scholar 

  • El-Shabrawy GM et al (2015) Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt). Chin J Oceanol Limnol 33:1368–1377

    Article  CAS  Google Scholar 

  • Elton CS (2000) The Ecology of Invasions by Animals and Plants. University of Chicago Press

    Google Scholar 

  • El-Zeiny A, El-Hefni A, Sowilem M (2017) Geospatial techniques for environmental modeling of mosquito breeding habitats at Suez Canal one. Egypt Egypt J Remote Sensing and Space Sciences (EJRS) 20:283–293

    Article  Google Scholar 

  • Failla AJ (2015) The ecological, economic, and public health impacts of nuisance chironomids and their potential as aquatic invaders. Aquat Invasions 9(1):1–5 

    Article  Google Scholar 

  • Fayad YH et al (2001) Ongoing activities on the biological control of water hyacinth in Egypt. Editors: M.H. Julien, M.P. Hill, T.D. Biological and integrated control of water hyacinth: Eichhornia crassipes. Proceedings of the Second Meeting of the Global Working Group for the Biological and Integrated Control of Water Hyacinth, Beijing, China, 9–12 October 2000–2001, 43–46

  • Fayad YH et al (2004) Successful achievements for applied biological control of water hyacinth in Egypt. Egypt J Biol Pest Control 14(1):259–263

    Google Scholar 

  • Ferrington LCJ, Berg MB, Coffman WP (2008) Chironomidae. In: Merritt R.W., Cummins K.W. and Berg M.B. (eds.), An Introduction to the Aquatic Insects of North America, Kendall/Hunt Publishing Co., Dubuque, Iowa, USA

  • Fishar MRA (1999) Distribution and abundance of benthic assemblages in El-Gamil Basin (Lake Manzalah, Egypt) b- Macrobenthos. Bull Nat Instit Oceanogr Fish Egypt 25:167–180

    Google Scholar 

  • Fishar MR, Gawad SSA (2009) Macroinvertebrate communities associated with the macrophyte Potamogeton pectinatus L. in Lake Manzalah, Egypt. Glob Vet, 3(3), 239–247

  • Gharib SM, Soliman AM (1998) Some water characteristics and phytozooplankton relationship in Lake Edku (Egypt) adjacent sea. Bull Fac Sci, Alex Univ 38(1/2):25–44

    CAS  Google Scholar 

  • Gibbs AG, Rajpurohit S (2010) Cuticular lipids and water balance. ed. G. J. Blomquist and A. G. In Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge: Cambridge University Press

  • Grazioli V et al (2016) Hypoxia and anoxia effects on alcohol dehydrogenase activity and hemoglobin content in Chironomus riparius Meigen. J Limnol 75(2):347–354

    Google Scholar 

  • Grosberg RK, Vermeij GJ, Wainwright PC (2012) Biodiversity in water and on land. Curr Biol 22(21):R900-903

    Article  CAS  PubMed  Google Scholar 

  • Guerguess SK (1979) Ecological study of zooplankton and distribution of macrofauna in Lake Manzalah. Ph. D. Thesis, Faculty of Science, Alexandria University pp. 361

  • Hadicke CW, Redei D, Kment P (2017) The diversity of feeding habits recorded for water boatmen (Heteroptera: Corixoidea) world-wide with implications for evaluating information on the diet of aquatic insects. Eur Entomol 114:147–159

    Article  Google Scholar 

  • Halim Y (1994) An ecologist looks at Mariut Lagoon. In: Workshop on "Lake Mariut problems and proposals for restoration and better management", April 27–30, 1994. Goethe Institute, Alexandria, Egypt

  • Halpern M, Senderovich Y (2015) Chironomid microbiome. Microbial Ecol 70:1–8

    Article  Google Scholar 

  • Hamburger K et al (1995) Effects of oxygen deficiency on survival and glycogen content of Chironomus anthracinus (Diptera, Chironomidae) under laboratory and field conditions. Hydrobiol 297:187–200

    Article  CAS  Google Scholar 

  • Hamed MA, El-Sawy MA, Abu El-Naga EH (2012) Hydrochemistry and nutrients of Bitter and Temsah Lakes, Suez Canal. Egypt Egypt Egypt J Aquat Biol Fish 16(2):1–12

    Article  Google Scholar 

  • Hassan M et al (2017) Zooplankton community structure of Lake Edku. Egypt Egypt J Aquat Biol Fish 21(3):55–77

    Article  Google Scholar 

  • Hjalmarsson AE, Bergsten J, Monaghan MT (2015) Dispersal is linked to habitat use in 59 species of water beetles (Coleoptera: Adephaga) on Madagascar. Ecography 38:732–739

    Article  Google Scholar 

  • Hussein H et al (2008) Pollution Monitoring for Lake Qarun. Adv Environ Biol 2(2):70–80

    CAS  Google Scholar 

  • Hussian AM et al (2019) Benthic Algae and Macroinvertebrates in Response to Habitat Conditions and Site-Specific Fish Dominance: A Case Study of Lake Qarun. Egypt Turk J Sci 20(4):241–253

    Google Scholar 

  • Khalil MT, Koussa AA (2013) Impact of pollution on the biodiversity of bottom fauna of Lake Maruit Egypt. Glob J Fish Aquat Res 6(6):282–294

    Google Scholar 

  • Khalil MT, Shaltout KH (2006) Lake Bardawil and Zaranik Protected Area, EEAA, No. 15, Cairo, Egypt. pp. 599, pp. 34 in Arabic

  • Khalil MT et al (2013) Ecological studies on Macrobenthic invertebrates of Bardawil Wetland. Egypt World Environ 3(1):1–8

    Google Scholar 

  • Khalil MT et al (2017) Impact of drainage water on Macrobenthos structure of lake Qaroun, El-Fayoum, Egypt. Egyp J Aquat Biol Fish 21(2):17–32

    Article  Google Scholar 

  • Khlebovich VV, Aladin NV (2010) Salinity factor in the life of animals. Vestn Akad Med Nauk 80(5–6):527–532

    Google Scholar 

  • Kokkinn MJ (1986) Osmoregulation, salinity tolerance and the site of ion excretion in the halobiont chironomid, Tanytarsus barbitarsis Freeman. Aust J Mar Freshw Res 37:243–250

    Article  Google Scholar 

  • Komolafe TO, Imoobe T (2020) Aquatic insect diversity and water quality assessment of a tropical freshwater pond in Benin city. Nigeria J Appl Sci Environ Manag 24(7):1129–1136

    Google Scholar 

  • Kornijo R, Markiyanova M, Evgeni L (2019) Feeding by two closely related species of Chironomus (Diptera: Chironomidae) in south Baltic lagoons, with implications for competitive interactions and resource partitioning. Aquat Ecol 53:315–324

    Article  Google Scholar 

  • Kranzfelder P, Ferrington LC (2018) Chironomidae (Diptera) species diversity of estuaries across a land use gradient on the Caribbean coast of Costa Rica. Rev Biol Trop (Intern J Trop) 66(3):1118–1134

    Article  Google Scholar 

  • Larsen EH et al (2014) Osmoregulation and excretion comprehensive Physiol 4:405–537

    Article  Google Scholar 

  • Lotfi NM (2016) Isolating non-O1/non-O39 Vibrio cholerae from Chironomus transvaalensis larvae and exuviae collected from polluted areas in Lake Manzala. Egypt J Asia-Pac Entomol 19:545–549

    Article  Google Scholar 

  • Madkour FA et al (2007) Comprehensive Hydro-biological Observations on the Suez Canal. Int J Oceans Oceanogr 2(1):125–137

    Google Scholar 

  • Mageed A (1998) Distribution and salinity ranges of Zooplankton organisms At El-Fayoum Depression (El-Fayoum-Egypt). Egypt J Aquat Biol Fishe 2(2):1–71

    Google Scholar 

  • Martens P, Hall L (2000) Malaria on the move: Human population movement and malaria transmission. Emerging Infect Dis 6(2):103–109

    Article  CAS  Google Scholar 

  • Marziali L, Lencioni V, Rossaro B (2006) Adaptation of pupae of Chironomidae (Insecta: Diptera) to oxygen-poor habitats. Pol J Ecol 54:687–693

    Google Scholar 

  • Metwally SM (2000) Burullus Lake: surveying of invertebrates. EEAA, Med Wet Coast, Cairo, p 15

    Google Scholar 

  • Misra N, Gupta AK (2005) Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci 169(2):331–339

    Article  CAS  Google Scholar 

  • Molineri C et al (2020) Indicative value of different taxonomic levels of Chironomidae for assessing the water quality. Ecol Ind 108:1–7

    Article  Google Scholar 

  • Nandi S (2014) Chironomid midges as allergens: evidence from two species from West Bengal, Kolkata, India. Indian J Med Res 139:921–926

    PubMed  PubMed Central  Google Scholar 

  • Osman KSM (2004) On the Ecology of insect species composition encountered in three natural protectorates of the Red Sea Governorate Egypt. Egypt J Union Arab Biol Cairo (A) Zool 2:404–432

    Google Scholar 

  • Patrick ML, Bradley TJ (2000) The physiology of salinity tolerance in larvae of two species of culex mosquitoes: the role of compatible solutes. J Exp Biol 203:821–830

    Article  CAS  PubMed  Google Scholar 

  • Patrick ML et al (2002) Ion regulatory patterns of mosquito larvae collected from breeding sites in the Amazon rain forest. Physiol and Biochem Zool 75:215–222

    Article  CAS  Google Scholar 

  • Pillot MHKM (2009) Chironomidae larvae biology and ecology of the Chironomid, vol II. KNNV Publishing, Zeist

    Book  Google Scholar 

  • Piscart C, Moreteau JC, Beisel JN (2005) Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient, Meurthe River, France. Hydrobiol 55:227–236

    Article  Google Scholar 

  • Prat N, Rieradevall M (1995) Life cycle and production of Chironomidae (Diptera) from Lake Banyoles (NE Spain). Freshw Biol 33(3):341–583

    Article  Google Scholar 

  • Prenner MM et al (2006) Toxicity and trace metal concentrations of sediments from Lake Maryut, Alexandria. Egypt Arch Environ Contam Toxicol 77:616–623

    Article  CAS  Google Scholar 

  • Ramdani M (2001) Open water zooplankton communities in North African wetland lakes: the CASSARINA Project. Aquat Ecol 35:319–333

    Article  Google Scholar 

  • Raunio J, Heino J, Paasivirta L (2011) Non-biting midges in biodiversity conservation and environmental. J Aquat Ecol 11:1057–1064

    Google Scholar 

  • Real M, Rieradevall M, Prat N (2000) Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: factors affecting distribution patterns. Freshw Biol 43:1–18

    Article  Google Scholar 

  • Rossaro B et al (2007) The relationship between body size, pupal thoracic horn development and dissolved oxygen in Chironomini (Diptera: Chironomidae). Fundam Appl Limnol 169:331–339

    Article  Google Scholar 

  • Saad El-Din MI, Gad El-HaK HN (2017) Impact of heavy metals contamination on spring abundance of aquatic macro-invertebrates inhabiting lake Timsah, Egypt. J Water Secu 3, jws2017003

  • Saad AS et al (2017) Assessment of the Physico-chemical Characteristics and Water Quality Analysis of Mariout Lake, Southern of Alexandria. Egypt J Environ Anal Toxicol 7(1):1000423

    Google Scholar 

  • Saether OA, Ekrem T (2003) Biogeography of tropical Chironomidae (Diptera), with special reference to Gondwanaland. Cimbebasia 19:175–191

    Google Scholar 

  • Samaan AA, Aleem AA (1972) The Ecology of Zooplankton in Lake Mariut. Bull Inst Oceanogr and Fish 2:377–397

    Google Scholar 

  • Sankarperumal G, Pandian TJ (1992) Larval abundance of Chironomus circumradius in relation to biotic and abiotic factors. Hydrobiol 246:205–212

    Article  CAS  Google Scholar 

  • Sayed MF, Abdel-Satar AM (2009) Chemical Assessment of Wadi El-Rayan Lakes Egypt. Ameri-Eur J Agricul Environ 5(1):53–62

    CAS  Google Scholar 

  • Selim TA, Hammad KM1, Boraie MS (2018) Distribution of mosquitoes along Wadi El-Rayan protected area. J Nucl Tech Appl Sci 6(1):15–32

    Google Scholar 

  • Serra SRQ et al (2016) the trait information of European Chironomidae (Insecta: Diptera): Towards a new database. Ecol Indic 61:282–292

    Article  Google Scholar 

  • Serra S et al (2017) Chironomidae traits and life history strategies as indicators of anthropogenic disturbance. Environ Monit Assess 189(7):326

    Article  PubMed  Google Scholar 

  • Shadrin NV et al (2017) Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production. Eur Zool J 84(1):61–72

    Article  CAS  Google Scholar 

  • Shafik MA (2008) Phytoremediation of some heavy metals by Dunaliella salina. Glob J Environ Res 2(1):01–11

    Google Scholar 

  • Shaltout KH (2010) Towards mainstreaming Lake Burullus Biodiversity, North Egypt. Ass Univ Bull Environ Res 13(1):71–87

    Google Scholar 

  • Shaltout KH, El-Bana M, Eid EM (2018) Ecology of the mangrove forests along the Egyptian Red Sea Coast. Lambert Academic Publishing, Publisher

    Google Scholar 

  • Short AEZ, Fikacek M (2013) Molecular phylogeny, evolution and classification of the Hydrophilidae (Coleoptera). Sys Entomol 38:723–752

    Article  Google Scholar 

  • Silva FL, Ekrem T (2016) Phylogenetic relationships of non-biting midges in the subfamily Tanypodinae (Diptera: Chironomidae) inferred from morphology. Sys Entomol 41:73–92

    Article  Google Scholar 

  • Soliman AM (1983) Quantitative and qualitative studies of the plankton of Lake Edku in relation to the local environmental conditions and to fish food. M.Sc. Thesis, Faculty. Science., Alexandria University

  • Soliman AM (2005) Zooplankton structure in Lake Edku and adjacent waters (Egypt). Egypt J Aqua Res 31(2):239–252

    Google Scholar 

  • Sowilem et al (2017) Species Composition and Relative Abundance of Mosquito Larvae in Suez Canal Zone. Egypt Asian J Biol 3(3):1–12

    Article  Google Scholar 

  • Steuer A (1942) Ricerche Idrobiologiche alle Foci del Nilo. Memorie dell‘Instituto Italiano di Idrobiologia, 1, 85–106

  • Touliabah H et al (2002) Phytoplankton and some abiotic features of El-Bardawil Lake. Sinai, Egypt, Afr J Aquat Sci 27(2):97–105

    Article  CAS  Google Scholar 

  • Uwadiae RE (2018) Sediment dwelling arthropods of a weak-tidal tropical Lagoon. Bells Univ of App Sci Environ 1(1):1–11

    Google Scholar 

  • Vermeij GJ, Dudley R (2000) Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems? Biol J Linn Soc 70:541–554

    Article  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2008) Osmolytes in salinity-stressed Iris hexagona. Acta Physiol Plant 30(5):715–721

    Article  CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA et al (2006) Stress induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: Evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. J Insect Physiol 52:202–214

    Article  CAS  PubMed  Google Scholar 

  • Younis AM (2018) Environmental Impacts on Egyptian Delta Lakes’ Biodiversity: A Case Study on Lake Burullus. In: Negm A., Bek M., Abdel-Fattah S. (eds) Egyptian Coastal Lakes and Wetlands: Part II. The Handbook of Environmental Chemistry, vol 72. Springer, Cham

  • Zakaria HY (2015) Article Review: Lessepsian migration of zooplankton through Suez Canal and its impact on ecological system. Egypt J Aqua Res 41:129–144

    Article  Google Scholar 

  • Zakaria HY, Ahmed MH, Flower R (2007) Environmental assessment of spatial distribution of zooplankton community in Lake Manzalah. Egypt Acta Adriatic 48(2):161–172

    Google Scholar 

  • Zalat A, Vildary SS (2007) Distribution of diatom assemblages and their relationship to environmental variables in the surface sediments of three northern Egyptian lakes. J Paleolimnol 34(2):159–174

    Article  Google Scholar 

  • Zyadah M, Ibrahim M, Madkour A (2004) Impact of environmental parameters on benthic invertebrates and zooplankton biodiversity of the eastern region of delta coast at Damietta. Egypt Egypt J Aquat Biol Fish 4:37–52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Fawzy Abd-El-aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-El-aziz, M.F. Entomofauna in Egyptian saltwater habitats. Int J Trop Insect Sci 41, 2297–2311 (2021). https://doi.org/10.1007/s42690-021-00510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-021-00510-x

Keywords

Navigation