Skip to main content
Log in

Distribution and toxicity of Bacillus thuringiensis (Berliner) strains from different crop rhizosphere in Indo-Gangetic plains against polyphagous lepidopteran pests

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Rhizobacterial diversity is an indicator of soil health and in turn it is influenced by the host crops, edaphic factors and weather. The present investigation reports the diversity of endospore forming, gram positive rhizobacteria (Bacillus megaterium, B. thuringiensis, B. cereus and Lysinibacillus spp.) inhabiting 11 different agricultural crops in the IGP of India. Twelve Bacillus thuringensis (Bt) isolates were identified by screening 62 g positive bacterial isolates from 63 rhizosperic soil samples collected from 6 districts of IGP. The highest Bt index was recorded from Bhopal (0.25) followed by Fatehpur (0.17), Kanpur dehat (0.10), Jalaun (0.08) and Hamirpur (0.06). The bacterial isolates were characterized based on the 16SrRNA gene and phylogenetically grouped into 3 clades. The spore crystal mixture of 12 Bt isolates were subjected to insect bioassay and it revealed, F8.IIPR has highest toxicity against Spilosoma obliqua Walker (100%), Olepa ricini Fabricius (91.67%) and Helicoverpa armigera Hubner (100%) larva. Survival analysis (ST50) showed that the S. obliqua is highly susceptible than O. ricini and H. armigera to F8.IIPR. Crystal staining and protein profiling showed the presence of cry 1 (135 kDa) and cry 2 (65 kDa) genes in 5 Bt isolates. PCR amplification of vip3A gene confirmed its presence in five Bt isolates. To conclude F8.IIPR and Ak2.IIPR has the potential as a promising biopesticide for controlling the three lepidopteran insects tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal N, Srivastava M, Tripathi A, Singh A (2010) Survey and monitoring of pests, parasites and predators of pulse crops in central and eastern Uttar Pradesh. The J Plant Protec Sci 1:45–52

    Google Scholar 

  • Al-Otaibi SA (2013) Mortality responses of Spodoptera litura following feeding onBt- sprayed plants. J Basic and Appl Sci 9:195–215. https://doi.org/10.6000/1927-5129.2013.09.27

    Article  Google Scholar 

  • Ammouneh H, Harba M, Idris E, Makee H (2011) Isolation and characterization of native Bacillus thuringiensis isolates from Syrian soil and testing of their insecticidal activities against some insect pests. Turk J Agric For 35(4):421–431

    Google Scholar 

  • Anandhi P, Saravanan L, Elamathi S, Ramtake PW, Varma S, Simon S (2013) Native Bacillus thuringiensis Berliner isolates with a wide spectrum of activities against cruciferous pests from diverse habitats of India. Biol Agric Hortic 29(3):209–218. https://doi.org/10.1080/01448765.2013.827131

    Article  Google Scholar 

  • Aramideh S, Saferalizadeh MH, Pourmirza AA, Bari MR, Keshavarzi M, Mohseniazar M (2010) Characterization and pathogenic evaluation of Bacillus thuringiensis isolates from West Azerbaijan province-Iran. Afr J Microbiol Res 4(12):1224–1229

    Google Scholar 

  • Armengol G, Escobar MC, Maldonado ME, Orduz S (2007) Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. J Appl Microbiol 102:77–88. https://doi.org/10.1111/j.1365-2672.2006.03063.x

    Article  CAS  PubMed  Google Scholar 

  • Armes NJ, Bond GS, Cooter RJ (1992) The laboratory culture and development of Helicoverpa armigera. Natural Resources Inst. Bull. 57. Chatham, United Kingdom: Natural Resources Institute. ISBN 0859543250 ISSN 0952–8245

  • Ashokan R, Puttaswamy, (2007) Isolation and Characterization of Bacillus thuringiensis Berliner from soil, leaf, seed dust and insect cadavers. J Bio Control 21(1):83–90

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Minerals release dynamics of tri-calcium phosphate (TCP) and waste muscovite (WM) by mineral solubilizing rhizobacteria (MSR) isolated from Indo-Gangetic Plain (IGP) of India. Geomicrobiol J 34(5):454–466

    CAS  Google Scholar 

  • Bernasconi E, Valsangiacomo C, Peduzzi R, Carota A, Moccetti T, Funke G (2004) Arthrobacter woluwensis sub acute infective endocarditis: case report and review of the literature. Clin Infect Dis 38(4):e27–e31. https://doi.org/10.1086/381436

    Article  PubMed  Google Scholar 

  • Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 243(2):467–472. https://doi.org/10.1016/j.femsle.2005.01.011

    Article  CAS  PubMed  Google Scholar 

  • Boonmee K, Thammasittirong SN, Thammasittirong A (2019) Molecular characterization of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Thailand. 3 Biotech 9(4):117. https://doi.org/10.1007/s13205-019-1646-3

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Campos MM, Campos CR (2017) Applications of quartering method in soils and foods. Int J Eng Res Appl 7(1):35–39

    Google Scholar 

  • Chambers JA, Jelen A, Gilbert MP, Jany CS, Johnson TB, Gawron-Burke C (1991) Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. J Bacteriol 173(13):3966–3976. https://doi.org/10.1128/jb.173.13.3966-3976.1991

  • Chilcott CN, Wigley PJ (1993) Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand. J Invertebr Pathol 61:244–247. https://doi.org/10.1006/jipa.1993.1047

    Article  Google Scholar 

  • Collier FA, Elliot SL, Ellis RJ (2005) Spatial variation in Bacillus thuringiensis/cereus populations within the phyllosphere of broad-leaved dock (Rumex obtusifolius) and surrounding habitats. FEMS Microbiol Ecol 54:417–425.https://doi.org/10.1016/j.femsec.2005.05.005

  • Crickmore N (2006) Beyond the spore - past and future developments of Bacillus thuringiensis as a biopesticide. J Appl Microbiol 101:616–619. https://doi.org/10.1111/j.1365-2672.2006.02936.x

    Article  CAS  PubMed  Google Scholar 

  • David BV, Ananthakrishnan TN (2004) General and applied entomology. Tata McGraw-Hill Publishing Company Limited, New Delhi, India

    Google Scholar 

  • de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37

  • Devi PI, Thomas J, Raju RK (2017) Pesticide consumption in India: A spatiotemporal analysis. Agric Econ Res Rev 30(1):163–172

    Article  Google Scholar 

  • Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7

    Google Scholar 

  • Donovan WP, Donovan JC, Engleman JT (2001) Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. J Invertebr Pathol 78:45–51. https://doi.org/10.1006/jipa.2001.5037

  • El-kersh TA, Al-sheikh YA, Al-akeel RA, Alsayed AA (2012) Isolation and characterization of native Bacillus thuringiensis isolates from Saudi Arabia. Afr J Biotechnol 11(8):1924–1938. https://doi.org/10.5897/ajb11.2717

    Article  CAS  Google Scholar 

  • Federici BA, Park HW, Sakano Y (2006) Insecticidal protein crystals of Bacillus thuringiensis. In: Shively JM, editor. Inclusions in Prokaryotes. Springer-Verlag, Berlin-Heidelberg 195–235. https://doi.org/10.1007/3-540-33774-1_8

  • Forsyth G, Logan NA (2000) Isolation of Bacillus thuringiensis from Northern Victoria Land, Antarctica. Lett Appl Microbiol 30:263–266. https://doi.org/10.1046/j.1472-765x.2000.00706.x

    Article  CAS  PubMed  Google Scholar 

  • Franco-Rivera A, Benintende G, Cozzi J, Baizabal-Aguirre VM, Valdez-Alarcón JJ, López-Meza JE (2004) Molecular characterization of Bacillus thuringiensis strains from Argentina. Anton Leeuw 86(1):87–92. https://doi.org/10.1023/b:anto.0000024913.94410.05

    Article  CAS  Google Scholar 

  • Gadhiya HA, Borad PK, Bhut JB (2014) Effectivness of synthetic insecticides against Helicoverpa armigera (Hubner) Hardwick and Spodoptera litura (Fabricius) infesting groundnut. The Bioscan 9(1):23–26

    Google Scholar 

  • Goel SC, Kumar S, Bhardwaj DK (2004) Salient features and bibliography of Bihar hairy caterpillar, Spilosoma obliqua Wlk. (Lepidoptera: Arctiidae). Uttar Pradesh Journal of Zoology 24:1–31

    Google Scholar 

  • Gorashi NE, Tripathi M, Kalia V, Gujar GT (2014) Identification and characterization of the Sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum. Indian J Exp Biol 52(06):637–649 http://nopr.niscair.res.in/handle/123456789/28871

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari D (ed) Plant growth and health promoting bacteria, Vol 18, Springer, Berlin, Heidelberg, pp 333–364. https://doi.org/10.1007/978-3-642-13612-2_15

  • Hariprasad P, Navya HM, Niranjana SR (2009) Advantage of using PSIRB over PSRB and IRB to improve plant health of tomato. Biol control 50(3):307–316. https://doi.org/10.1016/j.biocontrol.2009.04.002

    Article  Google Scholar 

  • Hongyu Z, Ziniu Y, Wangxi D (2000) Isolation, distribution and toxicity of Bacillus thuringiensis from warehouses in China. Crop Prot 19(7):449–454. https://doi.org/10.1016/s0261-2194(00)00036-3

    Article  Google Scholar 

  • Horani KH, Hajaij M, Charles JF (2003) Characterization of Bacillus thuringiensis ser. jordanica (Serotype H71), a novel serovariety isolated in Jordan. Curr Microbiol 47(1):0026–0031. https://doi.org/10.1007/s00284-002-3940-1

  • Hossain MA, Ahmed S, Hoque S (1997) Abundance and distribution of Bacillus thuringiensis in the agricultural soil of Bangladesh. J InvertebrPathol 70:221–225. https://doi.org/10.1006/jipa.1997.4694

    Article  CAS  Google Scholar 

  • Jacobsen CS, Hjelmsø MH (2014) Agricultural soils, pesticides and microbial diversity. Curr Opin Biotechnol 27:15–20. https://doi.org/10.1016/j.copbio.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  • Johri BN, Sharma A, Virdi JS (2003) Rhizobacterial diversity in India and its influence on soil and plant health. In Biotechnology in India I (pp. 49–89). Springer, Berlin, Heidelberg.

  • Jung YC, Kim SU, Bok SH, Park HY, Côté JC, Chung YS (1997) Characterization of Bacillus thuringiensis mutants and natural isolates by molecular methods. Can J Microbiol 43(5):403–410. https://doi.org/10.1139/m97-057

    Article  CAS  Google Scholar 

  • Kaur S, Singh A (2000) Natural occurrence of Bacillus thuringiensis in leguminous phylloplanes in the New Delhi region of India. World J Microbiol Biotechnol 16(7):679–682. https://doi.org/10.1023/A:1008988111932

    Article  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J plant growth Regul 36(3):608–617.

  • Kumar R, Srivastava RP (2016) Bioefficacy of some insecticides and mixed formulations against Spilarctia obliqua (Wlk.). J Entomol Res 40(3):267–273. https://doi.org/10.5958/0974-4576.2016.00048.7

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  • Lalitha C, Muralikrishna T, Sravani S, Devaki K (2012) Laboratory evaluation of native Bacillus thuringiensis isolates against second and third instar Helicoverpa armigera (Hubner) larvae. J Biopest 5(1):4–9

    Google Scholar 

  • Lee MK, Walters FS, Hart H, Palekar N, Chen JS (2003) The mode of action of Bacillus thuringensis Vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta endotoxin. Appl Environ Microbiol 69:4648–4657. https://doi.org/10.1128/aem.69.8.4648-4657.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan NA (2005) Bacillus anthracis, Bacillus cereus, and other aerobic endospore-forming bacteria. In: Borriello SP, Murray PR, Funke G (eds.) Topley & Wilson’s Microbiology & Microbial Infections (Tenth Edition). Bacteriology. Hodder Arnold, London, pp.922–952. https://doi.org/10.1002/9780470688618.taw0036

  • Lopez-Pazos SA, Martinez JW, Castillo AX, Ceron Salamanca JA (2009) Presence and significance of Bacillus thuringiensis Cry proteins associated with the Andean weevil Premnotrypes vorax (Coleoptera: Curculionidae). Rev Biol Trop 57:1235–1243. https://doi.org/10.15517/rbt.v57i4.5460

  • Maheswaran G, Sreeramanan S, Reena Josephine CM, Marimuthu K, Xavier R (2010) Occurrence of Bacillus thuringiensis in faeces of herbivorous farm animals. Afr J Biotechnol 9:8013–8019. https://doi.org/10.5897/ajb10.1253

    Article  Google Scholar 

  • Malviya N, Yadav AK, Yandigeri MS, Arora DK (2011) Diversity of culturable Streptomycetes from wheat cropping system of fertile regions of Indo-Gangetic Plains. India World J Microbiol and Biotechnol 27(7):1593–1602. https://doi.org/10.1007/s11274-010-0612-3

    Article  CAS  Google Scholar 

  • Mandal DI, Bhowmik PA, Baral KA (2013) Evaluation of insecticides for the management of Bihar hairy caterpillar, Spilosoma obliqua Walk. (Lepidoptera: Arctiidae) in black gram (Vigna mungo L.). The Bioscan 8(2):429–431

  • Martin P, Travers R (1989) World wide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin PAW, Farrar RR Jr, Blackburn MB (2009) Survival of diverse Bacillus thuringiensis strains in gypsy moth (Lepidoptera: Lymantriidae) is correlated with urease production. Biol Control 51:147–151. https://doi.org/10.1016/j.biocontrol.2009.03.020

    Article  CAS  Google Scholar 

  • Martin PA, Gundersen-Rindal DE, Blackburn MB (2010) Distribution of phenotypes among Bacillus thuringiensis strains. Syst Appl Microbiol 33(4):204–208. https://doi.org/10.1016/j.syapm.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  • Meadows MP, Ellis DJ, Butt J, Jarrett P, Burges HD (1992) Distribution, frequency, and diversity of Bacillus thuringiensis in an animal feed mill. Appl Environ Microbiol 58(4):1344–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milne R, Liu Y, Gauthier D, van Frankenhuyzen K (2008) Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). J InvertebrPathol 99:166–172. https://doi.org/10.1016/j.jip.2008.05.002

  • Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand? In: Arora NK (ed) Plant microbes symbiosis: Applied facets. Springer, New Delhi, pp 37–75

    Google Scholar 

  • Mohamed MJ, Kareem AA (2010) Effect of leaf extracts of medicinal plants on feeding, larval growth and defecation of woolly-bear caterpillar, Pericallia ricini (F.) (Arctidae: Lepidoptera) on castor bean. Madras Agric J 97(4/6):168–171.

  • Nair MRGK (1970) Insects and mites of crops in India. New Jack Printing Works Private Limited, Bombay, p 404

    Google Scholar 

  • Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci CMLS 59(3):410–416

    Article  CAS  PubMed  Google Scholar 

  • Ohba M, Aizawa K (1986a) Distribution of Bacillus thuringiensis in soils of Japan. J Invertebr Pathol 47:277–282. https://doi.org/10.1016/0022-2011(86)90097-2

    Article  Google Scholar 

  • Ohba M, Aizawa K (1986b) Insect toxicity of Bacillus thuringiensis isolated from soils of Japan. J Invertebr Pathol 47:12–20. https://doi.org/10.1016/0022-2011(86)90158-8

    Article  Google Scholar 

  • Olson S (2015) An analysis of the biopesticide market now and where it is going. Outlook on Pest Management 26:203–206. https://doi.org/10.1564/v26_oct_04

    Article  Google Scholar 

  • Park HW, Hayes SR, Mangum CM (2008) Distribution of mosquitocidal Bacillus thuringiensis and Bacillus sphaericus from sediment samples in Florida. J Asia-Pac Entomol 11:217–220. https://doi.org/10.1016/j.aspen.2008.09.005

    Article  Google Scholar 

  • Patel LC (2014) Sole and combined effect of some microbial and chemical insecticides against Spilarctia obliqua under laboratory conditions. International J Plant Prot 7(1):232–234

    Google Scholar 

  • Rabha M, Sharma S, Acharjee S, Sarmah BK (2017) Isolation and characterization of Bacillus thuringiensis strains native to Assam soil of North East India. 3Biotech 7(5):303 https://doi.org/10.1007/s13205-017-0935-y

  • Rahman R, Rahman MM, Islam S, Huque R (2002) Observations on the growth parameters of Spilosoma obliqua (Lepidoptera: Arctiidae) reared on artificial diets and reproductive competence of this irradiated pest and its progeny (No. IAEA-TECDOC--1283) International Atomic Energy Agency (IAEA).

  • Rajasekhar M, Shahanaz, Kalia V (2017) Biochemical and molecular characterization of Bacillus spp. isolated from insects. J Entomol Zool Stud 5(5):581–588

  • Rampersad J, Ammons D (2005) A Bacillus thuringiensis isolation method utilizing a novel stain, low selection and high throughput produced atypical results. BMC Microbiol 5(1):52. https://doi.org/10.1186/1471-2180-5-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renganathan K, Rathinam X, Danial M, Subramaniam S (2011) Quick isolation and characterization of novel Bacillus thuringiensis strains from mosquito breeding sites in Malaysia. Emir J Food Agr 23(1):17. https://doi.org/10.9755/ejfa.v23i1.5309

    Article  Google Scholar 

  • Revathi N, Kingsley S (2008) Neem derivatives as a larvicide against country bean pest, Pericallia ricini F.(Lepidoptera: Arctidae). J Entomol Res 32(1):27–29.

  • Rogério S, Neiva K, Lidia MF (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. Isrn Microbiol 2014:135675

    Google Scholar 

  • Saadaoui I, Rouis S, Jaoua S (2009) A new Tunisian strain of Bacillus thuringiensis krustaki having high insecticidal activity and δ-endotoxin. Arch Microbiol 191:341–348. https://doi.org/10.1007/s00203-009-0458-y

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9(3):283–300

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc (2006) SAS ® 9.1.3 Language Reference: Dictionary, 5th edn. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Selvapandiyan A, Arora N, Rajagopal R, Jalali SK, Venkatesan T, Singh SP, Bhatnagar RK (2001) Toxicity analysis of N-and C-terminus-deleted vegetative insecticidal protein from Bacillus thuringiensis. Appl Environ Microbiol 67(12):5855–5858. https://doi.org/10.1128/aem.67.12.5855-5858.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Singh P, Kumar S, Kashyap PL, Srivastava AK, Chakdar H, Sharma AK (2015) Deciphering diversity of salt-tolerant bacilli from saline soils of eastern Indo-gangetic plains of India. Geomicrobiol J 32(2):170–180. https://doi.org/10.1080/01490451.2014.938205

    Article  CAS  Google Scholar 

  • Shingote PR, Moharil MP, Dhumale DR, Jadhav PV, Satpute NS, Dudhare MS (2013) Screening of vip1/vip2 binary toxin gene and its isolation and cloning from local Bacillus thuringiensis isolates. Sci Asia 39:620–624. https://doi.org/10.2306/scienceasia1513-1874.2013.39.620

    Article  CAS  Google Scholar 

  • Shishir A, Akter A, Hassan MH, Kibria G, Ilias M, Khan SN, Hoq MM (2012) Characterization of locally isolated Bacillus thuringiensis for the development of eco-friendly biopesticides in Bangladesh. J Biopest 5:216

    Google Scholar 

  • Shishir A, Roy A, Islam N, Rahman A, Khan SN, Hoq M (2014) Abundance and diversity of Bacillus thuringiensis in Bangladesh and their cry genes profile. Front Environ Sci 2:20. https://doi.org/10.3389/fenvs.2014.00020

    Article  Google Scholar 

  • Singh SK, Mishra PK, Tandon SM (2015) Bioefficacy of Bacillus sphaericus R3 against Spilarctia obliquawlk (Lepidoptera: Arctiidae). Nat Sci 13(3):58–62 ISSN: 1545–0740

  • SPSS Inc. Released (2007) SPSS for Windows, Version 16.0. Chicago, SPSS Inc

  • Srinivasan R (2012) Integrating biopesticides in pest management strategies for tropical vegetable production. J Biopest 5:36–45

    Google Scholar 

  • Srivastava AK, Velmourougane K, Bhattacharyya T, Sarkar D, Pal DK, Prasad J, Sidhu GS, Nair KM, Sahoo AK, Das TH, Singh RS (2014) Impacts of agro-climates and land use systems on culturable microbial population in soils of the Indo-Gangetic Plains, India. Curr Sci Nov 10:1464–1469.

  • Sujithra M, Chander S (2014) Seasonal incidence and damage of major insect pests of pigeonpea, Cajanus cajan (L.). Indian J Entomol 76:202–206

    Google Scholar 

  • Swamy HM, Asokan R, Mahmood R, Nagesha SN (2013) Molecular characterization and genetic diversity of insecticidal crystal protein genes in native Bacillus thuringiensis isolates. Curr Microbiol 66(4):323–330. https://doi.org/10.1007/s00284-012-0273-6

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101:11030–11035. https://doi.org/10.1073/pnas.0404206101

    Article  CAS  Google Scholar 

  • Thaphan P, Keawsompong S, Chanpaisaeng J (2008) Isolation, toxicity and detection of cry gene in Bacillus thuringiensis isolates in Krabi province. Thailand SongklanakarinJ Sci Technol 30:597–601

    Google Scholar 

  • Vazhacharickal PJ, Sajeshkumar NK, Mathew JJ, Sreejith PE, Sabu M (2019) Common pest and diseases affecting Banana in South-India: an overview. Mar Augusthinose college, Ramapuram, Kerala, p p138

    Google Scholar 

  • Wu D, Chang F (1985) Synergism in the mosquitocidal activity of 26 and 65 kDa proteins from Bacillus thuringiensis subsp. Fukuokaensis crystal proteins Appl Environ Microb 57:1075–1081. https://doi.org/10.1016/0014-5793(85)81290-4

    Article  Google Scholar 

  • Wyres RB, Sheppard SK, Ellis RJ, Bonsall MB (2010) Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoSPathog 6:e1000905. https://doi.org/10.1371/journal.ppat.1000905

    Article  CAS  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 163–170

    Chapter  Google Scholar 

  • Yasutake K, Binh ND, Kagoshima K, Uemori A, Ohgushi A, Maeda M, Mizuki E, Yu YM, Ohba M (2006) Occurrence of parasporin-producing Bacillus thuringiensis in Vietnam. Can J Microbiol 52:365–372. https://doi.org/10.1139/w05-134

    Article  CAS  PubMed  Google Scholar 

  • Zothansanga R, Senthilkumar N, Gurusubramanian G (2016) Diversity and toxicity of Bacillus thuringiensis from shifting cultivation (jhum) habitat. Biocontrol Sci 21(2):99–111. https://doi.org/10.4265/bio.21.99

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Sujayanand.

Ethics declarations

Conflict of interest

Hereby, I Dr. Sujayanand, G.K., consciously assure that for the manuscript “Distribution and toxicity of Bacillus thuringiensis (Berliner) strains from different crop rhizosphere in Indo-Gangetic plains against polyphagous lepidopteran pest” following is fulfilled,

  1. i.

    This material is our own original work, which has not been previously published elsewhere.

  2. ii.

    This is to certify that there is no potential conflict of interest in the research work articles.

  3. iii.

    This is to certify that there is no human or animal were harmed in this research work.

  4. iv.

    This is to certify that pre-informed consent were obtained from all co-authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujayanand, G.K., Akram, M., Konda, A. et al. Distribution and toxicity of Bacillus thuringiensis (Berliner) strains from different crop rhizosphere in Indo-Gangetic plains against polyphagous lepidopteran pests. Int J Trop Insect Sci 41, 2713–2731 (2021). https://doi.org/10.1007/s42690-021-00451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-021-00451-5

Keywords

Navigation