Skip to main content

Advertisement

Log in

Assessment of insecticide resistance in Culex quinquefasciatus Say with first report on the presence of L1014F mutation from northern districts of West Bengal, India

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Vector-borne diseases pose serious threat to life and socio-economic status of an individual and application of insecticides has always been a prime strategy to control the vectors. However, with frequent use of insecticides the vectors develop resistance towards the same. It is therefore necessary to evaluate the resistance status of vectors against such chemicals for proper management of vector-borne diseases. As such, field populations of Culex quinquefasciatus a vector of lymphatic filariasis were collected 3 districts of West Bengal and mortality percentage was studied against 6 insecticides. Quantitative assay of major detoxifying enzymes was also studied to unveil their association with insecticide resistance and the presence of mutation in the voltage-gated sodium channel (L1014F) was also evaluated. This study showed multiple resistance to all of the insecticides used i.e., deltamethrin, lambdacyhalothrin, permethrin, DDT, propoxur and malathion). The presence of high frequency of L1014F mutant allele and enhanced enzyme activity may indicate their involvement in the development of insecticide resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amenya DA, Naguran R, Lo TC, Ranson H, Spillings BL, Wood OR, Brooke BD, Coetzee M, Koekemoer LL (2008) Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles funestus, resistant to pyrethroids. Insect Mol Biol 17:19–25

    CAS  PubMed  Google Scholar 

  • Asidi AN, N'Guessan R, Hutchinson RA, Traoré-Lamizana M, Carnevale P, Curtis CF (2004) Experimental hut comparisons of nets treated with carbamate or pyrethroid insecticides, washed or unwashed, against pyrethroid-resistant mosquitoes. Med Vet Entomol 18:134–140

    CAS  PubMed  Google Scholar 

  • Balabanidou V, Grigoraki L, Vontas J (2018) Insect cuticle: a critical determinant of insecticide resistance. Curr Opin Insect Sci 27:68–74

    PubMed  Google Scholar 

  • Barik SK, Hazra RK, Prusty MR, Rath A, Kar SK (2013) A simple, rapid and very efficient protocol for DNA isolation from mosquito species. Protoc Exch. https://doi.org/10.1038/protex.2013.007

  • Bharati M, Saha D (2018) Assessment of insecticide resistance in primary dengue vector, Aedes aegypti (Linn.) from northern districts of West Bengal, India. Acta Trop 187:78–86

    CAS  PubMed  Google Scholar 

  • Bisset JA, Rodriguez MM, Diaz C, Ortiz E, Marquetti MC, Hemingway J (1990) The mechanisms of organophosphate and carbamate resistance in Culex quinquefasciatus (Diptera: Culicidae) from Cuba. Bull Entomol Res 80:245–250

    CAS  Google Scholar 

  • Brogdon WG, Janet C (1997) Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J Am Mosq Control Assoc 13:233–237

    CAS  PubMed  Google Scholar 

  • Chandre F, Darriet F, Darder M, Cuany A, Doannio JM, Pasteur N, Guillet P (1998) Pyrethroid resistance in Culex quinquefasciatus from West Africa. Med Vet Entomol 12:359–366

    CAS  PubMed  Google Scholar 

  • Corbel V, N’guessan R, Brengues C, Chandre F, Djogbenou L, Martin T, Akogbéto M, Hougard JM, Rowland M (2007) Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop 101:207–216

    CAS  PubMed  Google Scholar 

  • Das B, Das KK, Roy TN (2016) Study on marketing system and value addition of pineapple fruit (Ananus comosus) in West Bengal. Agric Econ Res Rev 29:279

    Google Scholar 

  • David JP, Ismail HM, Chandor-Proust A, Paine MJ (2013) Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos Trans R Soc Lond Ser B Biol Sci 368:20120429

    Google Scholar 

  • Delannay C, Goindin D, Kellaou K, Ramdini C, Gustave J, Vega-Rúa A (2018) Multiple insecticide resistance in Culex quinquefasciatus populations from Guadeloupe (French West Indies) and associated mechanisms. PLoS One 13:e0199615

    PubMed  PubMed Central  Google Scholar 

  • Elissa N, Mouchet J, Rivière F, Meunier JY, Yao K (1993) Resistance of Anopheles gambiae ss to pyrethroids in Côte d'Ivoire. In: Annales-Societe Belge De Medecine Tropicale Institute of Tropical Medicine, pp 291–291

    Google Scholar 

  • Enayati AA, Vatandoost H, Ladonni H, Townson H, Hemingway J (2003) Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. Med Vet Entomol 17:138–144

    CAS  PubMed  Google Scholar 

  • Goindin D, Delannay C, Gelasse A, Ramdini C, Gaude T, Faucon F, David JP, Gustave J, Vega-Rua A, Fouque F (2017) Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies). Infect Dis Poverty 6:38

    PubMed  PubMed Central  Google Scholar 

  • Guillet P, N'guessan R, Darriet F, Traore-Lamizana M, Chandre F, Carnevale P (2001) Combined pyrethroid and carbamate ‘two-in-one’treated mosquito nets: field efficacy against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus. Med Vet Entomol 15:105–112

    CAS  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Hayes JD, Wolf CR (1988) Role of glutathione transferase in drug resistance. In: Glutathione conjugation: mechanisms and biological significance. Academic Press, London, p 3150–3155

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    CAS  PubMed  Google Scholar 

  • Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665

    CAS  PubMed  Google Scholar 

  • Kudom AA, Mensah BA, Froeschl G, Rinder H, Boakye D (2015) DDT and pyrethroid resistance status and laboratory evaluation of bio-efficacy of long lasting insecticide treated nets against Culex quinquefasciatus and Culex decens in Ghana. Acta Trop 150:122–130

    CAS  PubMed  Google Scholar 

  • Li T, Liu N (2014) Inheritance of permethrin resistance in Culex quinquefasciatus. J Med Entomol 47:1127–1134

    Google Scholar 

  • Liu N (2015) Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu Rev Entomol 60:537–559

    CAS  PubMed  Google Scholar 

  • Liu N, Yue X (2000) Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae). J Econ Entomol 93:1269–1275

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem. 193:265–75

  • Martinez-Torres D, Chevillon C, Brun-Barale A, Bergé JB, Pasteur N, Pauron D (1999) Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L mosquitoes. Pestic Sci 55:1012–1020

    CAS  Google Scholar 

  • N’Guessan R, Boko P, Odjo A, Knols B, Akogbeto M, Rowland M (2009) Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin. Tropical Med Int Health 14:389–395

    Google Scholar 

  • NVBDCP (2018) National Vector Borne Disease Control Programme. Filariasis: magnitude of disease. http://www.nvbdcp.gov.in/index4.html. Accessed 21 Nov 2018

  • Oxborough RM, Kitau J, Matowo J, Mndeme R, Feston E, Boko P, Odjo A, Metonnou CG, Irish S, N'guessan R, Mosha FW (2010) Evaluation of indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-susceptible Anopheles arabiensis and pyrethroid-resistant Culex quinquefasciatus mosquitoes. Trans R Soc Trop Med Hyg 104:639–645

    CAS  PubMed  Google Scholar 

  • Philbert A, Nkwengulila G, Lyantagaye SL (2014) A review of agricultural pesticides use and the selection for resistance to insecticides in malaria vectors. Advances Entomol 2:120–128

    Google Scholar 

  • Pietrantonio PV, Gibson G, Nawrocki S, Carrier F, Knight JW (2000) Insecticide resistance status, esterase activity, and electromorphs from mosquito populations of Culex quinquefasciatus Say (Diptera: Culicidae), in Houston (Harris County), Texas. J Vector Ecol: J Soc Vector Ecol 25:74–89

    CAS  Google Scholar 

  • Rai P, Bharati M, Saha D (2018) Filariasis: its manifestations, epidemiology and control strategies. In: Vector-borne diseases & treatment, vol II. Openaccessebooks, pp 1–19

    Google Scholar 

  • Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH (2000) Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol 9:491–497

    CAS  PubMed  Google Scholar 

  • Rozendaal JA (1997) Mosquitoes and other biting Diptera. Vector control: methods for use by individuals and communities. World Health Organization, Geneva, pp 6–28

    Google Scholar 

  • Saha D, Mukhopadhyay A (2013) Insecticide resistance mechanisms in three sucking insect pests of tea with reference to north-East India: an appraisal. Int J Trop Insect Sci 33:46–70

    Google Scholar 

  • Sarkar M, Borkotoki A, Baruah I, Bhattacharyya IK, Srivastava RB (2009) Molecular analysis of knock down resistance (kdr) mutation and distribution of kdr genotypes in a wild population of Culex quinquefasciatus from India. Tropical Med Int Health 14:1097–1104

    CAS  Google Scholar 

  • Skovmand O, Sanogo E (2018) Resistance of Culex quinquefasciatus to selected chemical and biological pesticides. Med Res Arch 6:1-9

  • Stark PM, Fredregill CL, Nolan MS, Debboun M (2017) Field cage insecticide resistance tests against Culex quinquefasciatus Say (Diptera: Culicidae) in Harris County, Texas, USA. J Vector Ecol 42:279–288

    PubMed  Google Scholar 

  • Sudomo M, Chayabejara S, Duong S, Hernandez L, Wu WP, Bergquist R (2010) Elimination of lymphatic filariasis in Southeast Asia. Adv Parasitol Academic Press 72:205–233

    PubMed  Google Scholar 

  • Tan J, Liu Z, Wang R, Huang ZY, Chen AC, Gurevitz M, Dong K (2005) Identification of amino acid residues in the insect sodium channel critical for pyrethroid binding. Mol Pharmacol 67:513–522

    CAS  PubMed  Google Scholar 

  • Thavaselvam D, Kumar AS, Sumodan PK (1993) Insecticide susceptibility status of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti in Panaji, Goa. Indian J Malariol 30:75–79

    CAS  PubMed  Google Scholar 

  • Tyagi BK, Munirathinam A, Venkatesh A (2015) A catalogue of Indian mosquitoes. Int J Mosq Res 2:50–97

    Google Scholar 

  • Van Asperen K (1962) A study of housefly esterases by means of a sensitive colorimetric method. J Insect Physiol 8:401–416

    CAS  Google Scholar 

  • WHO (2016) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. In: WHO/CDS/NTD/WHOPES/GCDPP/. World Health Organization, Geneva

    Google Scholar 

  • Xu Q, Wang H, Zhang L, Liu N (2006) Kdr allelic variation in pyrethroid resistant mosquitoes, Culex quinquefasciatus (S.). Biochem Biophys Res Commun 345:774–780

    CAS  PubMed  Google Scholar 

  • Yadouléton A, Badirou K, Agbanrin R, Jöst H, Attolou R, Srinivasan R, Padonou G, Akogbéto M (2015) Insecticide resistance status in Culex quinquefasciatus in Benin. Parasit Vectors 8:17

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to the Head, Department of Zoology, University of North Bengal, for providing laboratory facilities. The authors are also grateful to the Head, Department of Biotechnology, University of North Bengal, for granting permission to access microplate reader.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj Saha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, P., Bharati, M. & Saha, D. Assessment of insecticide resistance in Culex quinquefasciatus Say with first report on the presence of L1014F mutation from northern districts of West Bengal, India. Int J Trop Insect Sci 39, 301–309 (2019). https://doi.org/10.1007/s42690-019-00040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-019-00040-7

Keywords

Navigation