Skip to main content
Log in

Insect resistance in Rice (Oryza sativa L.): overview on current breeding interventions

  • Mini-Review
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Breeding for insect resistant varieties has been central to the integrated pest management as it offers an ecologically viable approach agianst biotic constraints. Considerable progress has been made in the past to incorporate resistance to insect pests of rice using conventional breeding approaches. However the diversity in insect pest population, continuous selection of virulent biotypes, lack of resistance sources in cultivated rice (Oryza sativa and O. glaberrima) gene pool, want of efficient insect rearing and varietal screening protocols and inherently complex genetics of resistance further necessitates supplementation of conventional breeding techniques with advanced molecular approaches. Hence, alternative approaches like wide hybridization to introgress resistance from other species of Oryza, transgenic approach to deploy Bt cry, snowdrop lectin and other plant derived genes are being actively pursued. The increasingly identified, mapped, cloned and characterized quantitative trait loci and genes related to insect resistance traits in rice have provided a solid foundation for direct selection and varietal improvement through molecular breeding. Utilization of DNA-based markers provided additional impetus to efficiency and precision of conventional plant breeding via marker-assisted selection to successfully introgress several genes for resistance to insect pests of rice. RNA interference technology has offered another reliable tool in meeting the challenges imposed by crop insects by targeting the enzymes/proteins integral to various biological processes of crop insects. This review briefly discusses the current progress and future prospects in molecular breeding for enhanced varietal tolerance to insect pests of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adang MJ (2013) Insect aminopeptidases N. In: Rawlings ND, Salvesen GS (eds) Handbook of proteolytic enzymes, 3rd edn. Academic Press, Elsevier Ltd., pp 405–409. https://doi.org/10.1016/B978-0-12-382219-2.00081-8

    Google Scholar 

  • Alfonso-Rubi J, Ortego F, Castañera P, Carbonero P, Dıaz I (2003) Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res 12:23–31

    CAS  PubMed  Google Scholar 

  • Angeles ER, Khush GS, Heinrichs EA (1981) New genes for resistance to white backed planthopper in rice. Crop Sci 21:47–50

    Google Scholar 

  • Ansari M, Moraiet M, Ahmad S (2014) Insecticides: impact on the environment and human health. In: Malik A, Grohmann E, Akhtar R (eds) Environmental deterioration and human health. Springer, Dordrecht, pp 99–123. https://doi.org/10.1007/978-94-007-7890-0_6

    Chapter  Google Scholar 

  • Bandong JP, Litsinger JA (2005) Rice crop stage susceptibility to the rice yellow stemborer Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae). Int J Pest Manag 51:37–43

    Google Scholar 

  • Baum JA, Roberts JK (2014) Progress towards RNAi-mediated insect pest management. Adv Insect Physiol:249–295. https://doi.org/10.1016/b978-0-12-800197-4.00005-1

    Google Scholar 

  • Bentur JS (2006) Host plant resistance to insects as a core of rice IPM. Science, technology and trade for peace and prosperity (IRRI, ICAR). McMillan India Ltd; p. 419-435

  • Bharathi Y, Kumar V, Pasalub IC, Balachandranb SM, Reddya VD, Rao KV (2011) Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests. J Biotechnol 152:63–71

    CAS  PubMed  Google Scholar 

  • Bhutani S, Kumar R, Chauhan R, Singh R, Chowdhury VK, Chowdhury JB, Jain RK (2006) Development of transgenic indica rice plants containing potato proteinase inhibitor 2 gene with improved defense against yellow stem borer. Physiol Mol Biol Plants 12(1):43–52

    CAS  Google Scholar 

  • Brar DS, Khush GS (2007) Breeding rice for resistance to biotic stresses: conventional and molecular approaches. SABRAO J 45:225–234

    Google Scholar 

  • Carriger JF, Rand GM, Gardinali PR, Perry WB, Tompkins MS, Fernandez AM (2006) Pesticides of potential ecological concern in sediment from South Florida canals: an ecological risk prioritization for aquatic arthropods. Soil Sediment Contam 15:21–45

    CAS  Google Scholar 

  • Chandrasekhar K, Vijayalakshmi M, Vani K, Kaul T, Reddy MK (2014) Phloem-specific expression of the lectin gene from Allium sativum confers resistance to the sap-sucker Nilaparvata lugens. Biotechnol Lett 36:1059–1067

    CAS  PubMed  Google Scholar 

  • Charles JF, Nielsen-LeRoux C, Delecluse A (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu Rev Entomol 41:451–472

    CAS  PubMed  Google Scholar 

  • Chen J, Huang DR, Wang L, Liu GJ, Zhuang JY (2010a) Identification of quantitative trait loci for resistance to whitebacked planthopper, Sogatella furcifera, from an interspecific cross Oryza sativa × O. rufipogon. Breed Sci 60 (2):153–159

    Google Scholar 

  • Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Chen J, Zhang W (2010b) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19(6):777–786

    CAS  PubMed  Google Scholar 

  • Chen M, Shelton A, Ye G (2011) Insect-resistant genetically modified rice in China: from research to commercialization. Annu Rev Entomol 56:81–101

    CAS  PubMed  Google Scholar 

  • Chen H, Stout MJ, Qian Q, Chen F (2012) Genetic, molecular and genomic basis of rice defense against insects. Crit Rev Plant Sci 31:74–91

    Google Scholar 

  • Clement SL, Quisenberry SS (eds) (1999) Global plant genetic resources for insect resistant crops. CRC Press, Boca Raton, p 295

    Google Scholar 

  • Cohen MB, Chen M, Bentur JS, Heong KL, Ye GY (2008) Bt rice in Asia: potential benefits, impact, and sustainability. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect resistant genetically modified crops within IPM programs. Springer Science + Business Media B.V., Dordrecht, pp 223–248

    Google Scholar 

  • Deka S, Barthakur S (2010) Overview on current status of biotechnological interventions on yellow stem borer Scirpophaga incertulas (Lepidoptera: Crambidae) resistance in rice. Biotechnol Adv 28:70–81

    CAS  PubMed  Google Scholar 

  • Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7

  • Duan X, Li X, Xue Q, Saad MA, Xu D, Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol 14:494–498

    CAS  PubMed  Google Scholar 

  • Dutta SS, Das S, Pale G, Iangrai B, Aochen C, Rai M, Pattanayak A (2016) Current status and future prospects of research on genetically modified rice: a review. Agric Rev 37(1):10–18

    Google Scholar 

  • Fan D, Liu Y, Zhang H, He J, Huang F, Huang S, Wu B, Liu D, Wen P, Liu L, Jiang L, Cheng X, Wan J (2018) Identification and fine mapping of qWBPH11 conferring resistance to whitebacked planthopper (Sogatella furciferaHorváth) in rice (Oryza sativa L.). Mol Breed 38:96

    Google Scholar 

  • Foissac X, Loc NT, Christou P, Gatehouse AMR, Gatehouse JA (2000) Resistance to green leafhopper Nephotettix virescens and brown planthopper Nilaparvata lugens in transgenic rice expressing snowdrop lectin Galanthus nivalis agglutinin. J Insect Physiol 46:573–583

    CAS  PubMed  Google Scholar 

  • Fujita D, Kohli A, Horgan F (2013) Rice resistance to hoppers and leafhoppers. Crit Rev Plant Sci 32(3):162–191. https://doi.org/10.1080/07352689.2012.735986

    Article  CAS  Google Scholar 

  • Garrood WT, Zimmer CT, Gorman KJ, Nauen R, Bassa C, Davies TGE (2016) Field-evolved resistance to imidacloprid and ethiprole in populations of brown planthopper, Nilaparvata lugens collected from a cross South and East Asia. Pest Manag Sci 72:140–149

    CAS  PubMed  Google Scholar 

  • Geethanjali S, Kadirvel P, Gunathilagaraj K, Maheswaran M (2009) Detection of quantitative trait loci (QTL) associated with resistance to whitebacked planthopper, Sogatella furcifera in rice (Oryza sativa L.). Plant Breed 128:130–136

    CAS  Google Scholar 

  • Gill SS, Cowles EA, Pietrantonio FV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37:615–636

    CAS  PubMed  Google Scholar 

  • Han L, Wu K, Peng Y, Wang F, Guo Y (2006) Evaluation of transgenic Rice expressing Cry1Ac and CpTI against Chilo suppressalis and Intrapopulation variation in susceptibility to Cry1Ac. Environ Entomol 35(5):1453–1459

    Google Scholar 

  • Han L, Wu K, Peng Y, Wang F, Guo Y (2007) Efficacy of transgenic rice expressing Cry1Ac and CpTI against the rice leaffolder, Cnaphalocrocis medinalis (Guenee). J Invertebr Pathol 96:71–79

    CAS  PubMed  Google Scholar 

  • Han L, Liu P, Wu K, Peng Y, Wang F (2008) Population dynamics of Sesamia inferens on transgenic Rice expressing Cry1Ac and CpTI in Southern China. Environ Entomol 37(5):1361–1370

    CAS  PubMed  Google Scholar 

  • Hernandez JE, Khush GS (1981) Genetics of resistance to white backed planthopper in some rice (Oryza sativa L.) varieties. Oryza 18:44–50

    Google Scholar 

  • Hossain MA (2005) Development of transgenic crop plant expressing entomocidal gene. Ph.D. thesis. Calcutta University, Calcutta

  • Hossain MA, Maiti MK, Basu A, Sen S, Ghosh AK, Sen SK (2006) Transgenic expression of onion leaf lectin gene in Indian mustard offers protection against aphid colonization. Crop Sci 46:2022–2032

    CAS  Google Scholar 

  • Hu J, Xiao C, He Y (2016) Recent progress on genetics and molecular breeding of brown planthopper resistance in rice. Rice 9:30. https://doi.org/10.1186/s12284-016-0099-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Jena KK, Khush GS (1990) Introgression of genes from Oryza officinalis well exWatt to cultivated rice, O. sativa L. Theor Appl Genet 80:737–745. https://doi.org/10.1007/BF00224186

    Article  CAS  PubMed  Google Scholar 

  • Jena KK, Kim SM (2010) Current status of brown planthopper (BPH) resistance and genetics. Rice 3(2–3):161–171

    Google Scholar 

  • Khan ZR, Barrion AT, Litsinger JA, Castilla NP, Joshi RC (1988) A bibliography of rice leaffolders (Lepidoptera: Pyralidae). Insect Sci Appl 9:129–174

    Google Scholar 

  • Khush GS (1977) Breeding for resistance in rice. Ann N Y Acad Sci 287:296–308

    Google Scholar 

  • Kola VSR, Renuka P, Madhav MS, Mangrauthia SK (2015) Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Front Physiol 6:119. https://doi.org/10.3389/fphys.2015.00119

  • Kola VSR, Renuka P, Padmakumari AP, Mangrauthia SK, Balachandran SM, Babu VR, Madhav MS (2016) Silencing of CYP6 and APN genes affects the growth and development of rice yellow stem borer, Scirpophaga incertulas. Front Physiol 7:20

    PubMed  PubMed Central  Google Scholar 

  • Krishnaiah NV, Lakshmi VJ, Pasalu IC (2006) Status of neonicotinoid insecticide resistance in rice planthoppers - a review. Agric Rev 27:298–302

    Google Scholar 

  • Kumar R, Bhutani S, Singh R, Chauhan R, Chowdhury VK, Jain RK (2009) Enhanced resistance against the rice leaf folder (Cnaphalocrocis medinalis) in transgenic rice plants containing the potato proteinase inhibitor II gene. Entomologia Generalis 32:11–22

    Google Scholar 

  • Kushwaha KS (1988) Leaffolder (LF) epidemic in Haryana (India). International Rice Research Notes 13, 16–17

  • Lakshmi VJ, Krishnaiah NV, Katti G, Pasalu IC, Bhanu KV (2010) Development of insecticide resistance in rice brown planthopper and whitebacked planthopper in Godavari delta of Andhra Pradesh. Indian J Plant Prot 38:35–40

  • Lee SI, Lee S, Koo JC, Chun HJ, Lim CO, Mun JH, Song YH, Cho MJ (1999) Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Mol Breed 5(1):1–9

    Google Scholar 

  • Li XM, Min SK, Xiong ZM, Hu GW (1990) Genetics analysis of resistance to whitebacked planthopper Sogatella furcifera (Horváth) in four rice varieties (Oryza sativa) of Yunnan Province. Chin J Rice Sci 4(3):113–116

    Google Scholar 

  • Li XM, Zhai HQ, Wan JM, Ma LY, Zhuang JY, Liu GJ, Yang CD (2004) Mapping of a new gene Wbph6(t) resistance to the whitebacked planthopper, Sogatella furcifera, in rice. Rice Sci 11:86–90

    Google Scholar 

  • Li G, Xu X, Xing H, Zhu H, Fan Q (2005) Insect resistance to Nilaparvata lugens and Cnaphalocrocis medinalis in transgenic indica rice and the inheritance of gna+sbti transgenes. Pest Manag Sci 61:390–396

    CAS  PubMed  Google Scholar 

  • Li J, Chen Q, Lin Y, Jiang T, Wua G, Huaa H (2011) RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion. Pest Manag Sci 67:852–859

    CAS  PubMed  Google Scholar 

  • Li Y, Hallerman EM, Liu Q, Wu K, Peng Y (2016) The development and status of Bt rice in China. Plant Biotechnol J 14:839–848

    PubMed  Google Scholar 

  • Ling Y, Huang FK, Long LP, Zhong Y, Yin WB, Huang SS, Wu BQ (2011) Studies on the pesticide resistance of Nilaparvata lugens (Stål) in China and Vietnam. China J Appl Entomol 48:1374–1380

    CAS  Google Scholar 

  • Liu S, Ding Z, Zhang C, Yang B, Liu Z (2010) Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 40:666–671

    CAS  PubMed  Google Scholar 

  • Makkar GS, Bentur JS (2017) Breeding for stem borer and gall midge resistance in rice. In: Arora A, Sandhu S (eds) Breeding insect resistant crops for sustainable agriculture. Springer Nature, Singapore, pp 323–352. https://doi.org/10.1007/978-981-10-6056-4_11

    Chapter  Google Scholar 

  • Maqbool SB, Riazuddin S, Loc NT, Gatehouse AMR, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93

    CAS  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, He J, Geadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226

    CAS  PubMed  Google Scholar 

  • Matsumura M, Morimura SS (2010) Recent status of insecticide resistance in Asian planthoppers. Jpn Agric Res Q 41:225–230

  • Matsumura M, Takeuchi H, Satoh M, Sanada-Morimura S, Otuka A, Watanabe T, Van Thanh D (2008) Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in east and south-East Asia. Pest Manag Sci 64:1115–1121

    CAS  PubMed  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349. https://doi.org/10.1038/nature02873

    Article  CAS  PubMed  Google Scholar 

  • Mickel CE and Standish J (1947) Susceptibility of processed soy flour and soy grits in storage to attack by Tribolium castaneum. University of Minnesota Agricultural Experimental Station Technical Bulletin 178, 1–20

  • Mochizuki A, Nishizawa Y, Onodera H, Tabei Y, Toki S, Habu Y, Ugaki M, Ohashi Y (1999) Transgenic rice plants expressing a trypsin inhibitor are resistant against rice stem borers, Chilo suppressalis. Entomol Exp Appl 93:173–178

    CAS  Google Scholar 

  • Mohanpuria P, Sandhu SK, Arora R (2015) RNA interference research: current status and future outlook for utilization in integrated pest management. In: Singh B, Arora R, Gosal SS (eds) Biological and molecular approaches in pest management. Scientific Publishers, New Delhi, pp 52–72

    Google Scholar 

  • Nagadhara D, Ramesh S, Pasalu IC, Rao YK, Sarma NP, Reddy VD, Rao KV (2004) Transgenic rice plants expressing the snowdrop lectin gene gna exhibit high level of resistance to the white backed planthopper. Theor Appl Genet 109:1399–1405

    CAS  PubMed  Google Scholar 

  • Padmarathi G, Ram T, Ramesh K, Kondala Rao Y, Pasalu IC, Viraktamath BC (2007) Genetics of whitebacked planthopper, Sogatellafurcifera(Horváth) resistance in rice. SABRAO J 39:99–105

    Google Scholar 

  • Padmavathi C, Katti G, Padmakumari AP, Voleti SR, Subba RLV (2013) The effect of leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) injury on the plant physiology and yield loss in rice. J Appl Entomol 137:249–256

    Google Scholar 

  • Quilis J, López-García B, Meynard D, Guiderdoni E, Segundo S (2014) Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol J 12(3):367–377

    CAS  PubMed  Google Scholar 

  • Ramesh S, Nagadhara D, Pasalu I, Padmakumari A, Sarma NP, Reddy VD, Rao KV (2004) Development of stem borer resistant transgenic parental lines involved in the production of hybrid rice. J Biotechnol 111:131–141

    CAS  PubMed  Google Scholar 

  • Ramesh K, Padmavathi G, Deen R, Pandey MK, Lakshmi VJ, Bentur JS (2014) Whitebacked planthopper Sogatella furcifera (Horva’th) (Homoptera: Delphacidae) resistance in rice variety Sinna Sivappu. Euphytica 200:139–148

    CAS  Google Scholar 

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Christou P, Bharathi M, Williams S, Bown DP, Powell KS, Spence J, Gatehouse AMR, Gatehouse JA (1998) Expression of snow drop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15:469–477

    CAS  PubMed  Google Scholar 

  • Rao Y, Dong G, Zeng D, Hu J, Zeng L, Gao Z, Zhang G, Guo L, Qian Q (2010) Genetic analysis of leaffolder resistance in rice. J Genet Genomics 37:325–331

    CAS  PubMed  Google Scholar 

  • Rao Y, Li Y, Qian Q (2014) Recent progress on molecular breeding of rice in China. Plant Cell Rep 33:551–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed BJ, Chandler DS, Sandeman RM (1999) Aminopeptidases as potential targets for the control of the Australian sheep blowfly, Lucilia cuprina. Int J Parasitol 29(6):839–850

    CAS  PubMed  Google Scholar 

  • Saha P, Majumder P, Datta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap sucking insect-pests. Planta 223:1329–1343

    CAS  PubMed  Google Scholar 

  • Sanchez PLA, Wing RA, Brar DS (2013) The wild relative of rice: genomes and genomics. In: Zhang Q, Wing R (eds) Genetics and genomics of Rice. Springer Science+Business Media, New York, pp 9–25. https://doi.org/10.1007/978-1-4614-7903-1_2

    Chapter  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect resistant transgenic plants. Trends Biotechnol 16:168–175

    CAS  Google Scholar 

  • Scott JG (2008) Insect cytochrome P450s: thinking beyond detoxification. In: Liu N (ed) Recent advances in insect physiology, toxicology and molecular biology. Research Signpost, Kerala, India, pp 117–124

  • Sharma HC, Sharma KK, Crouch JH (2004) Genetic transformation of crops for insect resistance: potential and limitations. Crit Rev Plant Sci 23:47–72

    CAS  Google Scholar 

  • Sharma S, Kooner R, Arora R (2017) Insect pests and crop losses. In: Arora R, Sandhu S (eds) Breeding insect resistant crops for sustainable agriculture. Springer Nature, Singapore, pp 45–66. https://doi.org/10.1007/978-981-10-6056-4_2

    Chapter  Google Scholar 

  • Sidhu GS, Khush GS, Medrano FG (1979) A dominant gene in rice for resistance to white backed planthopper and its relationship to other plant characteristics. Euphytica 28:227–232

    Google Scholar 

  • Sidhu N, Basal UK, Shukla KK, Saini RG (2005) Genetics of resistance to white-backed planthopper in five rice stocks. SABRAO J 37:43–49

    Google Scholar 

  • Slamet LIH, Novalina S, Damayanti D, Sutrisno Christou P, Aswidinoor H (2003) Inheritance of cry1Ab and snowdrop lectin gna genes in transgenic javanica rice progenies and bioassay for resistance to brown plant hopper and yellow stem borer. International Rice Research Institute (IRRI), Los Banos, pp 565–566

    Google Scholar 

  • Sogawa K (2007) Whitebacked planthopper in Chinese Japonica rice. International Agricultural Research Series No.15. Japan International Research Center for Agricultural Sciences, Tsukuba, p 185 (in Japanese)

    Google Scholar 

  • Sogawa K (2015) Planthopper outbreaks in different paddy ecosystems in asia: man-made hopper plagues that threatened the green revolution in rice. In: Heong KL, Cheng J, Escalada MM (eds) Rice planthoppers. Springer Dordrecht, pp 33–63. https://doi.org/10.1007/978-94-017-9535-7_2

    Google Scholar 

  • Sogawa K, Liu G, Qiang Q (2009) Prevalence of whitebacked hoppers in Chinese hybrid rice and whitebacked planthopper resistance in Chinese japonica rice. In: Heong KL, Hardy B (eds) Planthoppers: New threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Los Banos, pp 257–280

    Google Scholar 

  • Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128

    CAS  PubMed  Google Scholar 

  • Su J, Wang Z, Zhang K, Tian X, Yin Y, Zhao X, Shen A, Gao CF (2013) Status of insecticide resistance of the whitebacked planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Fla Entomol 96(3):948–956

    CAS  Google Scholar 

  • Sun X, Wu A, Tang K (2002) Transgenic rice lines with enhanced resistance to the small brown planthopper. Crop Prot 21:511–514

    Google Scholar 

  • Suzuki Y, Sogawa K, Seino Y (1996) Ovicidal reaction of rice plants against the whitebacked planthopper, Sogatella furcifera Horváth (Homoptera: Delphacidae). Appl Entomol Zool 31:111–118

    Google Scholar 

  • Tan GX, Wang QM, Ren X et al (2004) Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance. Heredity 92:212–217

    CAS  PubMed  Google Scholar 

  • Tang K, Hu Q, Sun X, Wan B, Qi H, Lu X (2001) Development of transgenic rice homozygous lines with enhanced resistance to rice brown planthopper. In Vitro Cell Dev Biol Plant 37:334–340

    CAS  Google Scholar 

  • Tyagi AK, Mohanty A (2000) Rice transformation for grop improvement and functional genomics. Plant Sci 158:1–18

    CAS  PubMed  Google Scholar 

  • Vila L, Quilis J, Meynard D, Breitler JC, Marfa V, Murillo I, Vassal JM, Messeguer J, Guiderdoni E, San Segundo B (2005) Expression of the maize proteinase inhibitor (mpi) gene in rice plants enhances resistance against the striped stem borer (Chilo suppressalis): effects on larval growth and insect gut proteinases. Plant Biotechnol J 3:187–202

    CAS  PubMed  Google Scholar 

  • Wan JM (2006) Perspectives of molecular design breeding in crops. Acta Agron Sin 32(3):455–462

    CAS  Google Scholar 

  • Wan P, Jia S, Li N, Fan J, Li G (2014) RNA interference depletion of the Halloween gene disembodied implies its potential application for management of planthopper Sogatella furcifera and Laodelphax striatellus. PLoS One 9(1):e86675

    PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhang X, Zhang J (2005) Molecular characterization of four midgut aminopeptidase N isozymes from the cabbage looper, Trichoplusia ni. Insect Biochem Mol Biol 35:611–620

    CAS  PubMed  Google Scholar 

  • Wang Y, Chen J, Zhu YC, Ma C, Huang Y, Shen J (2008a) Susceptibility to neonicotinoids and risk of resistance development in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Pest Manag Sci 64:1278–1284

    CAS  PubMed  Google Scholar 

  • Wang YH, Gao CF, Zhu YC, Chen J, Li WH, Zhuang YL, Dai DJ, Zhou WJ, Yong C, Shen JL (2008b) Imidacloprid susceptibility survey and selection risk assessment in field populations of Nilaparvata lugens (Homoptera: Delphacidae). J Econ Entomol 101:515–522

    CAS  PubMed  Google Scholar 

  • Wang Y, Fan HW, Huang HJ, Xue J, Wu WJ, Bao YY, Xu HJ, Zhu ZR, Cheng JA, Zhang CX (2012) Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochem Mol Biol 42:637–646

    CAS  PubMed  Google Scholar 

  • Wei JW, Xu XP, Chen JT, Zhang LY, Fan YL, Li BJ (2000) Research on improving rice resistance to the pest by Bt and SBTi genes. Sheng Wu Gong Cheng Xue Bao 16(5):603–608

    CAS  PubMed  Google Scholar 

  • Wu CF, Khush GS (1985) A new dominant gene for resistance to whitebacked planthopper in rice. Crop Sci 25:505–509

    Google Scholar 

  • Wu C, Zhao R, Fan Y, Zhang C, Oliva N, Cohen M et al (1997) Transgenic rice plants resistant to yellow stem borer. Rice Biotechnol 9:7

  • Wu SF, Zeng B, Zheng C, Mu XC, Zhang Y, Hu J, Zhang S, Gao CF, Shen JL (2018) The evolution insecticide resistance in BPH (Nilaparvata lugens Stal ) of China in the period 2012-2016. Sci Rep 8:4586

    PubMed  PubMed Central  Google Scholar 

  • Yamasaki M, Tsunematu H, Yoshimura A, Iwata N, Yasui H (1999) Quantitative trait locus mapping of ovicidal response in rice Oryza sativa L. against the whitebacked planthopper, Sogatella furcifera (Horváth). Crop Sci 39:1178–1183

    CAS  Google Scholar 

  • Yamasaki M, Yoshimura A, Yasui H (2003) Genetic basis of ovicidal response to whitebacked planthopper Sogatella furcifera (Horváth) in rice (Oryza sativa L.). Mol Breed 12:133–143

    CAS  Google Scholar 

  • Yang YL, Xu J, Leng YJ, Xiong G, Hu J, Zhang G, Huang L, Wang L, Guo L, Li J, Chen F, Qian Q, Zeng D (2014) Quantitative trait loci identification, fine mapping and gene expression profiling for ovicidal response to whitebacked planthopper (Sogatella furcifera Horváth) in rice (Oryza sativa L.). BMC Plant Biol 14

  • Yarasi B, Sadumpati V, Immanni CP, Vudem DR, Khareedu VR (2008) Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests. BMC Plant Biol 8:102

    PubMed  PubMed Central  Google Scholar 

  • Yoshimura S, Komatsu M, Kaku K, Hori M, Ogawa T, Muramoto K, Kazama T, Ito Y, Toriyama K (2012) Production of transgenic rice plants expressing Dioscorea batatas tuber lectin 1 to confer resistance against brown planthopper plant. Biotechnology 29:501–504

    CAS  Google Scholar 

  • Yu R, Xu X, Liang Y, Tian H, Pan Z, Jin S, Wang N, Zhang W (2014) The insect ecdysone receptor is a good potential target for RNAi based pest control. Int J Biol Sci 10(10):1171–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan SY, Li GQ, Wan PJ, Fu Q, Lai FX, Mu LL (2017) Knockdown of a putative argininosuccinate lyase gene reduces arginine content and impairs nymphal development in Nilaparvata lugens. Insect Biochem Physiol 95(1):e21385

    Google Scholar 

  • Zha WJ, Peng XX, Chen RZ, Du B, Zhu LL, He GC (2011) Knockdown of midgut genes by dsRNA- transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6:e20504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liao X, Mao K, Zhang K, Wan H, Li J (2016) Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (stål) in China 2012–2014. Pestic Biochem Physiol 132:13–20

    CAS  PubMed  Google Scholar 

  • Zhang L, Qiu LY, Yang HL, Wang HJ, Zhou M, Wang SG, Tang B (2017) Study on the effect of wing bud chitin metabolism and its developmental network genes in the brown planthopper, Nilaparvata lugens, by knockdown of TRE gene. Front Physiol 8:750

    PubMed  PubMed Central  Google Scholar 

  • Zheng X, Ren X, Su J (2011) Insecticide susceptibility of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) in China. J Econ Entomol 104:653–658

    CAS  PubMed  Google Scholar 

  • Zhou XJ, Ma CX, Li M, Sheng CF, Liu HX, Qiu XH (2010) CYP9A12 and CYP9A17 in the cotton bollworm, Helicoverpa armigera: sequence similarity, expression profile and xenobiotic response. Pest Manag Sci 66:65–73

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Plant Breeding and Genetics and the Department of Entomology, Punjab Agricultural University, Ludhiana for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Singh Makkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makkar, G.S., Bhatia, D., Suri, K. et al. Insect resistance in Rice (Oryza sativa L.): overview on current breeding interventions. Int J Trop Insect Sci 39, 259–272 (2019). https://doi.org/10.1007/s42690-019-00038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-019-00038-1

Keywords

Navigation