Skip to main content
Log in

Braid Group Representations from Twisted Tensor Products of Algebras

  • Original Article
  • Published:
Peking Mathematical Journal Aims and scope Submit manuscript

Abstract

We unify and generalize several approaches to constructing braid group representations from finite groups, using iterated twisted tensor products. We provide some general characterizations and classification of these representations, focusing on the size of their images, which are typically finite groups. The well-studied Gaussian representations associated with metaplectic modular categories can be understood in this framework, and we give some new examples to illustrate their ubiquity. Our results suggest a relationship between the braiding on the G-gaugings of a pointed modular category \({\mathcal {C}}(A,Q)\) and that of \({\mathcal {C}}(A,Q)\) itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andruskiewitsch, N., Schneider, H.-J.: Pointed Hopf algebras. In: New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., vol. 43, pp. 1–68. Cambridge University Press, Cambridge (2002)

  2. Ardonne, E., Cheng, M., Rowell, E.C., Wang, Z.: Classification of metaplectic modular categories. J. Algebra 466, 141–146 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Bardakov, V.G., Bellingeri, P.: On representations of braids as automorphisms of free groups and corresponding linear representations. In: Knot Theory and Its Applications, Contemp. Math., vol. 670, pp. 285–298. American Mathematical Society, Providence (2016)

  4. Bigelow, S.: Braid groups are linear. J. Am. Math. Soc. 14(2), 471–486 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Birman, J.S., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313(1), 249–273 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Bonderson, P., Delaney, C., Galindo, C., Rowell, E.C., Tran, A., Wang, Z.: On invariants of modular categories beyond modular data. J. Pure Appl. Algebra 223(9), 4065–4088 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. Computational Algebra and Number Theory (London, 1993). J. Symb. Comput. 24(3–4), 235–265 (1997)

  8. Cap, A., Schichl, H., Vanžura, J.: On twisted tensor products of algebras. Commun. Algebra 23(12), 4701–4735 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Cui, S.X., Galindo, C., Plavnik, J.Y., Wang, Z.: On gauging symmetry of modular categories. Commun. Math. Phys. 348(3), 1043–1064 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories. I. Selecta Math. (N.S.) 16(1), 1–119 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Etingof, P., Galindo, C.: Reflection fusion categories. J. Algebra 516, 172–196 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Etingof, P., Nikshych, D., Ostrik, V.: Weakly group-theoretical and solvable fusion categories. Adv. Math. 226(1), 176–205 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Etingof, P., Rowell, E., Witherspoon, S.: Braid group representations from twisted quantum doubles of finite groups. Pac. J. Math. 234(1), 33–41 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Formanek, E., Lee, W., Sysoeva, I., Vazirani, M.: The irreducible complex representations of the braid group on \(n\) strings of degree \(\le n\). J. Algebra Appl. 2(3), 317–333 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Franko, J.M., Rowell, E.C., Wang, Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15(4), 413–427 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Freedman, M.H., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227(3), 605–622 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Galindo, C., Hong, S.-M., Rowell, E.C.: Generalized and quasi-localizations of braid group representations. Int. Math. Res. Not. IMRN 2013(3), 693–731 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Galindo, C., Rowell, E.C.: Braid representations from unitary braided vector spaces. J. Math. Phys. 55(6), 061702 (2014). https://doi.org/10.1063/1.4880196

    MathSciNet  MATH  Google Scholar 

  19. Gelaki, S., Naidu, D., Nikshych, D.: Centers of graded fusion categories. Algebra Number Theory 3(8), 959–990 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Goldschmidt, D.M., Jones, V.F.R.: Metaplectic link invariants. Geom. Dedicata 31(2), 165–191 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter Graphs and Towers of Algebras. Mathematical Sciences Research Institute Publications, vol. 14. Springer, New York (1989). https://doi.org/10.1007/978-1-4613-9641-3

  22. Green, J., Nikshych, D.: On the braid group representations coming from weakly group-theoretical fusion categories, preprint. arXiv:1911.02633

  23. Gustafson, P., Rowell, E., Ruan, Y.: Metaplectic categories, gauging and property F. Tohoku Math. J. (to appear). arXiv:1808.00698

  24. Hietarinta, J.: All solutions to the constant quantum Yang–Baxter equation in two dimensions. Phys. Lett. A 165(3), 245–251 (1992)

    MathSciNet  Google Scholar 

  25. Izumi, M.: The structure of sectors associated with Longo–Rehren inclusions. II: Examples. Rev. Math. Phys. 13(5), 603–674 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Jara Martínez, P., López Peña, J., Panaite, F., van Oystaeyen, F.: On iterated twisted tensor products of algebras. Int. J. Math. 19(9), 1053–1101 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Jones, V.F.R.: Braid groups, Hecke algebras and type \({\rm II}_1\) factors. In: Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., vol. 123, pp. 242–273. Longman Sci. Tech., Harlow (1986)

  28. Jones, V.F.R.: Notes on subfactors and statistical mechanics. In: Braid Group, Knot Theory and Statistical Mechanics, Adv. Ser. Math. Phys., vol. 9, pp. 1–25. World Sci. Publ., Teaneck (1989)

  29. Jones, V.F.R.: On knot invariants related to some statistical mechanical models. Pac. J. Math. 137(2), 311–334 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Larsen, M.J., Rowell, E.C.: An algebra-level version of a link-polynomial identity of Lickorish. Math. Proc. Camb. Philos. Soc. 144(3), 623–638 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Murakami, J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24(4), 745–758 (1987)

    MathSciNet  MATH  Google Scholar 

  32. Naidu, D., Rowell, E.C.: A finiteness property for braided fusion categories. Algebr. Represent. Theory 14(5), 837–855 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Natale, S.: The core of a weakly group-theoretical braided fusion category. Int. J. Math. 29(2), 1850012, 23 pp. (2018)

  34. Nikshych, D.: Classifying braidings on fusion categories. In: Tensor Categories and Hopf Algebras, Contemp. Math., vol. 728, pp. 155–167. American Mathematical Society, Providence (2019)

  35. Rowell, E.C.: A quaternionic braid representation (after Goldschmidt and Jones). Quantum Topol. 2(2), 173–182 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Rowell, E.C., Wang, Z.: Localization of unitary braid group representations. Commun. Math. Phys. 311(3), 595–615 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Rowell, E.C., Wang, Z.: Mathematics of topological quantum computing. Bull. Am. Math. Soc. (N.S.) 55(2), 183–238 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Rowell, E.C., Wenzl, H.: \({\rm SO}(N)_2\) braid group representations are Gaussian. Quantum Topol. 8(1), 1–33 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Tambara, D., Yamagami, S.: Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra 209(2), 692–707 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Tuba, I., Wenzl, H.: Representations of the braid group \(B_3\) and of \({\rm SL}(2,{ Z})\). Pac. J. Math. 197(2), 491–510 (2001)

    MATH  Google Scholar 

  41. Turaev, V., Wenzl, H.: Quantum invariants of \(3\)-manifolds associated with classical simple Lie algebras. Int. J. Math. 4(2), 323–358 (1993)

    MathSciNet  MATH  Google Scholar 

  42. Turaev, V.: Faithful linear representations of the braid groups. Séminaire Bourbaki, vol. 1999/2000. Astérisque (276), 389–409 (2002)

  43. Waterhouse, W.C.: The number of congruence classes in \(M_n(\mathbf{F}_q)\). Finite Fields Appl. 1(1), 57–63 (1995)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Rowell.

Additional information

The authors gratefully acknowledge support under USA NSF Grant DMS-1664359. We also thank C. Galindo, JM Landsberg, Z. Wang and S. Witherspoon for valuable insight. ER was partially supported by a Texas A&M Presidential Impact Fellowship and a Simons Fellowship. Part of this research was carried out while ER was visiting BICMR, Peking University, and AIMR, Tohoku University—the hospitality of these institutions is gratefully acknowledged. Another part of this work was carried out while QZ and ER participated in a semester-long program at MSRI, which is partially supported by NSF Grant DMS-1440140.

Appendix: Computations for \(G=S_3\) and \({\mathcal {A}}_n(Q_8)\)

Appendix: Computations for \(G=S_3\) and \({\mathcal {A}}_n(Q_8)\)

In what follows we provide some details classifying solutions to the \({\mathcal {A}}(S_3,\tau )\) and \({\mathcal {A}}(Q_8)\)-YBE.

1.1 Symmetric Group \(S_3\)

We let uv be the generators for \(S_3\) with \(u^2=v^3=1\) and \(uvu=v^2\). For example, we could take \(u=(1\;2)\) and \(v=(1\;2\;3).\) By the theory above, we initialize with the following Magma code to find conditions on \(a,b,c,d,e\in {\mathbb {C}}\) so that \(r=1+au+bv+cv^2+duv+euv^2\) is an \({\mathcal {A}}(S_3,\tau )\)-YBO.

figure a

The ideal of solutions is generated by the coefficients of the monomials in \(u_i,v_j\). We enforce invertibility of r by assuming the determinant of the image of r under the faithful \(S_3\) representation on \({\mathbb {C}}^3\) is non-zero. The output of the Gröbner basis is the following set of polynomials:

$$\begin{aligned}&\{c, b, e(a^2+d^2+e^2+1), ad+ae+de, a^3+a^2e+2ae^2+de^2+e^3+a+e,\\&\quad -a^2e+ae^2+d^3+2de^2+d\}. \end{aligned}$$

Notice that \(c=b=0\), in all cases. If \(e=0\) then \(ad=0\), and \(a^3+a=d^3+d=0\), which are degenerate solutions of the form \(1+xu\) that can be obtained from \({\mathbb {Z}}_2\) (see [15]).

If \(e\ne 0\), we find that e is a free parameter, and the following code shows that we may normalize to get \(r^4=1\). There is a 1-parameter family of solutions for (ade). Moreover, one sees that if we require a unitary solution each of ade should be pure imaginary, and consequently the equation \(a^2+d^2+e^2+1=0\) implies that \((a/\mathrm {i},d/\mathrm {i},e/\mathrm {i})\) is a point on the unit sphere. Geometrically, this is the intersection of the unit sphere with the surface given by \(xy+xz+yz=0\).

figure b
figure c

1.2 Quaterionic Algebra \({\mathcal {A}}_n(Q_8)\)

For the case of the algebra \({\mathcal {A}}_n(Q_8)\), we use Magma to classify \({\mathcal {A}}(Q_8)\)-YBOs. The following is the final code, where the last polynomial relations are the coefficients obtained from an initial run of the normal form command on an initial run (i.e., without the last set of relations). One finds that the non-trivial solutions for (abc) are all \(\pm 1\), so that if we want unitary solutions, the inverse of R1 is of the form given as R1i since \(u^*=u^{-1}=-u\), etc. We conclude that all unitary solutions are equivalent to the choice \((a,b,c)=(1,1,1)\).

figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustafson, P., Kimball, A., Rowell, E.C. et al. Braid Group Representations from Twisted Tensor Products of Algebras. Peking Math J 3, 103–130 (2020). https://doi.org/10.1007/s42543-020-00023-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42543-020-00023-5

Keywords

Mathematics Subject Classification

Navigation