Skip to main content
Log in

In vitro studies in red dacca (Musa acuminata): an ornamental horticultural crop

  • Short Communications
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Bananas (Musa) are non-woody, giant herbaceous perennial plants well-acquainted for their nutritious fruits and utile leaves. Cultivation practices used for crop improvement provide not only food security but also create employment opportunities to the growers. Red banana (Musa acuminata) not only possesses nutritive value but also decorates the ecology bearing red-colored inflorescence; which suits it well as an ornamental plant. To broaden our knowledge of red banana cultivation, we, therefore, targeted our research on this wild cultivar to achieve its high rate of production by standardizing in-vitro conditions of micropropagation. Axillary buds were used as explants for in vitro plant regeneration studies in Musa acuminata. MS media supplemented with growth regulators BAP (4 mg l−1), and IBA (1 mg l−1) suited well for 80% multiplication response and 63% root regeneration in the red banana cultures. Obtained plantlets were further acclimatized for hardening in the potting mixture of soil:FYM:sand (1:1:1) with a 92% survival rate. The current work executed for clonal propagation of this wild cultivar provides a forum for further research in molecular breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Data is available in the manuscript.

References

  • Agastian P, Williams L, Ignacimuthu S (2006) In vitro propagation of Justicia gendarussa Burm. F—a medicinal plant. Indian J Biotechnol 5:246–248

    Google Scholar 

  • Ali A, Sajid A, Naveed NH, Majid A, Saleem A, Khan UA, Fafery FI, Naz S (2011) Initiation, proliferation and development of micropropagation system for mass-scale production of banana through meristem culture. Afr J Biotechnol 10:15731–15738

    Article  CAS  Google Scholar 

  • Aman T, Prabhuling G, Hipparagi K, Prakash DP, Babu AG (2018) In vitro multiplication of banana cv. rajapuri bale (Musa spp., AAB group). Int J Curr Microbiol Appl Sci 7(7):3141–3151

    Article  Google Scholar 

  • Anbazhagan M, Balachandran B, Arumugam K (2014) In vitro propagation of Musa sp (Banana). Int J Curr Microbiol Appl Sci 3(7):399–404

    Google Scholar 

  • Arias O (1992) Commercial micropropagation of banana. Biotechnology applications for banana and plantain improvement, INIBAP, SanJose, Costa Rica

    Google Scholar 

  • Elhory SMA, Aziz MA, Rahid AA, Yunus AG (2009) Prolific plant regeneration through organogenesis from scalps of (Musa spp.) cv Tanduk. Afr J Biotechnol 8:6208–6213

    Article  CAS  Google Scholar 

  • Gilmar RZ, Gilberto BK, Jane EK, Elaine C (2000) Hormonal and histological studies related to in vitro banana bud formation. Plant Cell Tissue Organ Cult 63:187–192

    Article  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, New York, p 680

    Google Scholar 

  • Hrahsel L, Basu A, Sahoo L, Robert T (2014) In vitro propagation and assessment of the genetic fidelity of Musa acuminata (AAA) cv. Vaibalhla derived from immature male flowers. Appl Biochem Biotechnol 172:1530–1539

    Article  CAS  PubMed  Google Scholar 

  • Justine AK, Kaur N, Savita PPK (2022) Biotechnological interventions in banana: current knowledge and future prospects. Heliyon 8(11):e11636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar KPS, Bhowmik D, Duraivel S, Manivannan U (2012) Traditional and medicinal uses of banana. J Pharmacogn Phytochem 1:51–63

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naika HR, Krishna V (2008) Plant regeneration from callus culture of Clematis gouriana Roxb.—a rare medicinal plant. Turk J Biol 32:99–103

    CAS  Google Scholar 

  • Nandariyah et al (2021) Development of banana in vitro from male bud culture supplemented with some concentration of sucrose and benzyladenine. IOP Conf Ser: Earth Environ Sci 724:012007

  • Parkhe S, Dahale M, Ningot E, Gawande S (2018) Study of different potting mixture on hardening of banana tissue culture plantlets its field performance. Int J Curr Microbiol App Sci 6:1941–1947

    Google Scholar 

  • Rahman MZ, Rahman MH, Mullah MU, Sultan RS, Bari MA, Hossain M (2005) In vitro shoot multiplication and rooting of a dessert banana (Musa sp cv. Anupom). Pak J Biol Sci 8:1298–1302

    Article  Google Scholar 

  • Rahman S, Biswas N, Hassan M, Ahmed G, Islam R, Moniruzzaman HE (2013) Micro propagation of red banana (Musa sp.) cv. Agnishwar. Int Res J Biotech 4(4):83–88

    Google Scholar 

  • Rajoriya P, Singh V, Jaiswal N, Lall R (2018) Optimizing the effect of plant growth regulators on in vitro micropropagation of Indian red banana (Musa acuminata). J Pharmacogn Phytochem 7:628–634

    CAS  Google Scholar 

  • Sawardekar S, Keskar K, Gokhale N, Sawant S (2018) Standardization of in vitro regeneration techniques in red banana and fidelity testing of tissue culture-raised plantlets of Red Banana. J Eco Env 37:101–109

    Google Scholar 

  • Singh CR, Kathiresan K, Boopathy NS, Anandhan S, Govindan T (2013) Evaluation of microbial potential of different coloured banana peels. Int J Preclin Pharm Res 4:62–64

    Google Scholar 

  • Subramaniam S, Rathinam X, Poobathy R, Sinniah U (2008) In vitro production of multiple bud clumps (Mbcs) from cavendish banana cultivar, Brasilian (AAA). Americ-Eura J Sust Agri 2(3):300–307

    Google Scholar 

  • Uzaribara E, Nachegowda V, Ansar H, Sathyanarayana BN, Amreen T (2015) In vitro propagation of red banana (Musa acuminata). The Bioscan 10(1):125–129

    Google Scholar 

  • Vuylsteke D (1989) Shoot-tip culture for the propagation conservation and exchange of Musa germplasm. IBPGR, Rome

    Google Scholar 

  • Zaffari GR, Kerbauy GB, Kraus JE, Romano EC (2000) Hormonal and histological studies related to in vitro banana bud formation. Plant Cell Tissue Organ Cult 63(3):187–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Shri. Aditya Biotech Laboratory Hosur, Tamil Nādu for providing the red banana explants for experimentation studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Thakur.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

All the authors declare this is their own original work, which has not been previously published elsewhere even currently not being considered for publication elsewhere. Also, this research analysis has been done truthfully and completely. There is no involvement of any animals/animal part in the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, R.S., Pawar, R., Dishri, M. et al. In vitro studies in red dacca (Musa acuminata): an ornamental horticultural crop. Vegetos (2024). https://doi.org/10.1007/s42535-024-00912-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42535-024-00912-5

Keywords

Navigation