Skip to main content
Log in

Forecasting volatility with machine learning and rough volatility: example from the crypto-winter

  • Original Article
  • Published:
Digital Finance Aims and scope Submit manuscript

Abstract

We extend the application and test the performance of a recently introduced volatility prediction framework encompassing LSTM and rough volatility. Our asset class of interest is cryptocurrencies, at the beginning of the “crypto-winter” in 2022. We first show that to forecast volatility, a universal LSTM approach trained on a pool of assets outperforms traditional models. We then consider a parsimonious parametric model based on rough volatility and Zumbach effect. We obtain similar prediction performances with only five parameters whose values are non-asset-dependent. Our findings provide further evidence on the universality of the mechanisms underlying the volatility formation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data used are publicly available on binance.com.

Notes

  1. Mccrank, J. (2022, February 14). Wall St Week Ahead Crypto investors face more uncertainty after rocky start to 2022. Reuters. https://www.reuters.com/business/finance/wall-st-week-ahead-crypto-investors-face-more-uncertainty-after-rocky-start-2022-2022-02-11/.

  2. Harrison, E. (2022, May 10). The crypto-winter is here. Bloomberg.com. https://www.bloomberg.com/news/newsletters/2022-05-10/the-crypto-winter-is-here.

  3. Howcroft, E. (2022, June 13). Cryptocurrency market value slumps under $1 trillion. Reuters. https://www.reuters.com/business/finance/cryptocurrency-market-value-slumps-under-1-trillion-2022-06-13/.

  4. Coingecko. (2023). 2022 Annual Crypto Industry Report. CoinGecko. https://www.coingecko.com/research/publications/2022-annual-crypto-report.

  5. More about USDT can be found at https://tether.to/en/how-it-works.

References

  • Amirshahi, B., & Lahmiri, S. (2023). Hybrid deep learning and GARCH-family models for forecasting volatility of cryptocurrencies. Machine Learning with Applications, 12, 100465.

    Article  Google Scholar 

  • Arnosti, N., & Weinberg, S. M. (2022). Bitcoin: A natural oligopoly. Management Science, 68(7), 4755–4771.

    Article  Google Scholar 

  • Baur, D. G., & Dimpfl, T. (2018). Asymmetric volatility in cryptocurrencies. Economics Letters, 173, 148–151.

    Article  Google Scholar 

  • Bayer, C., Friz, P., & Gatheral, J. (2016). Pricing under rough volatility. Quantitative Finance, 16(6), 887–904.

    Article  Google Scholar 

  • Bennedsen, M., Lunde, A., & Pakkanen, M. S. (2022). Decoupling the short-and long-term behavior of stochastic volatility. Journal of Financial Econometrics, 20(5), 961–1006.

    Article  Google Scholar 

  • Bianchi, D., & Babiak, M. (2022). On the performance of cryptocurrency funds. Journal of Banking & Finance, 138, 106467.

    Article  Google Scholar 

  • Cheikh, N. B., Zaied, Y. B., & Chevallier, J. (2020). Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models. Finance Research Letters, 35, 101293.

    Article  Google Scholar 

  • Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2), 174–196.

    Article  Google Scholar 

  • Delfabbro, P., King, D. L., & Williams, J. (2021). The psychology of cryptocurrency trading: Risk and protective factors. Journal of behavioral addictions, 10(2), 201–207.

    Article  Google Scholar 

  • Donier, J., & Bonart, J. (2015). A million metaorder analysis of market impact on the Bitcoin. Market Microstructure and Liquidity, 1(02), 1550008.

    Article  Google Scholar 

  • D’Amato, V., Levantesi, S., & Piscopo, G. (2022). Deep learning in predicting cryptocurrency volatility. Physica A: Statistical Mechanics and its Applications, 596, 127158.

    Article  Google Scholar 

  • El Euch, O., Gatheral, J., & Rosenbaum, M. (2019). Roughening Heston. Risk, pages 84–89.

  • El Euch, O., & Rosenbaum, M. (2018). Perfect hedging in rough Heston models. The Annals of Applied Probability, 28(6), 3813–3856.

    Google Scholar 

  • El Euch, O., & Rosenbaum, M. (2019). The characteristic function of rough Heston models. Mathematical Finance, 29(1), 3–38.

    Article  Google Scholar 

  • Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-Rego, D., Wu, F., & Li, L. (2022). Cryptocurrency trading: a comprehensive survey. Financial Innovation, 8(1), 1–59.

    Article  Google Scholar 

  • Gatheral, J., Jaisson, T., & Rosenbaum, M. (2018). Volatility is rough. Quantitative Finance, 18(6), 933–949.

    Article  Google Scholar 

  • Gatheral, J., Jusselin, P., & Rosenbaum, M. (2020). The quadratic rough Heston model and the joint S &P 500/VIX smile calibration problem. Risk, May 2020.

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

    Google Scholar 

  • Griffin, J. M., & Shams, A. (2020). Is Bitcoin really untethered? The Journal of Finance, 75(4), 1913–1964.

    Article  Google Scholar 

  • Hendrycks, D., & Gimpel, K. (2020). Gaussian error linear units (gelus). arXiv preprint, arXiv:1606.08415v4.

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  Google Scholar 

  • Kakinaka, S., & Umeno, K. (2022). Asymmetric volatility dynamics in cryptocurrency markets on multi-time scales. Research in International Business and Finance, 62, 101754.

    Article  Google Scholar 

  • Kingma, D. P., & Ba, J. (2015). Adam: a method for stochastic optimization. Proceedings of the International Conference on Learning Representations (ICLR).

  • Kristjanpoller, W., & Minutolo, M. C. (2018). A hybrid volatility forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis. Expert Systems with Applications, 109, 1–11.

    Article  Google Scholar 

  • Li, T., Shin, D., & Wang, B. (2021). Cryptocurrency pump-and-dump schemes. Available at SSRN 3267041.

  • Malik, N., Aseri, M., Singh, P. V., & Srinivasan, K. (2022). Why Bitcoin will fail to scale? Management Science, 68(10), 7323–7349.

    Article  Google Scholar 

  • Mita, M., Ito, K., Ohsawa, S., & Tanaka, H. (2019). What is stablecoin?: A survey on price stabilization mechanisms for decentralized payment systems. In 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), pages 60–66. IEEE.

  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Available online: http://bitcoin.org/bitcoin.pdf.

  • Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160(1), 246–256.

    Article  Google Scholar 

  • Rosenbaum, M., & Zhang, J. (2022a). Deep calibration of the quadratic rough Heston model. Risk, Oct 2022.

  • Rosenbaum, M., & Zhang, J. (2022b). On the universality of the volatility formation process: when machine learning and rough volatility agree. To appear in Frontiers in Financial Mathematics.

  • Takaishi, T. (2020). Rough volatility of Bitcoin. Finance Research Letters, 32, 101379.

    Article  Google Scholar 

  • Wu, P., Muzy, J.-F., & Bacry, E. (2022). From rough to multifractal volatility: The log S-fBM model. Physica A: Statistical Mechanics and its Applications, 604, 127919.

    Article  Google Scholar 

  • Zumbach, G. (2010). Volatility conditional on price trends. Quantitative Finance, 10(4), 431–442.

    Article  Google Scholar 

Download references

Acknowledgements

Siu Hin Tang is supported by the SINGA award by A*Star Singapore. Mathieu Rosenbaum is supported by the École Polytechnique’s chairs Deep finance and statistics and Machine learning and systematic methods. Chao Zhou is supported by the Ministry of Education in Singapore under the MOE AcRF grants A-0004255-00-00, A-0004273-00-00, A-0004589-00-00 and by Iotex Foundation Ltd under the grant A-8001180-00-00.

Author information

Authors and Affiliations

Authors

Contributions

S.H.T. prepared the data and conducted the numerical experiments. All authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to Siu Hin Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S.H., Rosenbaum, M. & Zhou, C. Forecasting volatility with machine learning and rough volatility: example from the crypto-winter. Digit Finance (2024). https://doi.org/10.1007/s42521-024-00108-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42521-024-00108-1

Keywords

JEL Classification

Navigation