Skip to main content
Log in

X-Ritz Solution for Nonlinear Free Vibrations of Plates with Embedded Cracks

  • Original Article
  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

The analysis of large amplitude vibrations of cracked plates is considered in this study. The problem is addressed via a Ritz approach based on the first-order shear deformation theory and von Kármán’s geometric nonlinearity assumptions. The trial functions are built as series of regular orthogonal polynomial products supplemented with special functions able to represent the crack behaviour (which motivates why the method is dubbed as eXtended Ritz); boundary functions are used to guarantee the fulfillment of the kinematic boundary conditions along the plate edges. Convergence and accuracy are assessed to validate the approach and show its efficiency and potential. Original results are then presented, which illustrate the influence of cracks on the stiffening effect of large amplitude vibrations. These results can also serve as benchmark for future solutions of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  2. Bachene, M., Tiberkak, R., Rechak, S.: Vibration analysis of cracked plates using the extended finite element method. Arch. Appl. Mech. 79(3), 249–262 (2009)

    Article  MATH  Google Scholar 

  3. Bose, T., Mohanty, A.: Vibration analysis of a rectangular thin isotropic plate with a part-through surface crack of arbitrary orientation and position. J. Sound Vib. 332(26), 7123–7141 (2013)

    Article  Google Scholar 

  4. Bose, T., Mohanty, A.: Large amplitude axisymmetric vibration of a circular plate having a circumferential crack. Int. J. Mech. Sci. 124–125, 194–202 (2017)

    Article  Google Scholar 

  5. Chu, H., Hermann, G.: Influence of large amplitude on free flexural vibrations of rectangular elastic plates. J. Appl. Mech. 23, 532–540 (1956)

    MathSciNet  MATH  Google Scholar 

  6. Ganapathi, M., Varadan, T., Sarma, B.: Nonlinear flexural vibrations of laminated orthotropic plates. Comput. Struct. 39(6), 685–688 (1991)

    Article  Google Scholar 

  7. Guan-Liang, Q., Song-Nian, G., Jie-Sheng, J.: A finite element model of cracked plates and application to vibration problems. Comput. Struct. 39(5), 483–487 (1991)

    Article  Google Scholar 

  8. Han, W., Petyt, M.: Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method—ii: 1st mode of laminated plates and higher modes of isotropic and laminated plates. Comput. Struct. 63(2), 309–318 (1997)

    Article  MATH  Google Scholar 

  9. Huang, C., Leissa, A., Chan, C.: Vibrations of rectangular plates with internal cracks or slits. Int. J. Mech. Sci. 53(6), 436–445 (2011)

    Article  Google Scholar 

  10. Huang, C., Leissa, A., Li, R.: Accurate vibration analysis of thick, cracked rectangular plates. J. Sound Vib. 330(9), 2079–2093 (2011)

    Article  Google Scholar 

  11. Huang, C., Lin, Y.: Fourier series solutions for vibrations of a rectangular plate with a straight through crack. Appl. Math. Model. 40(23), 10389–10403 (2016)

    Article  MathSciNet  Google Scholar 

  12. Huang, C.S., Lee, M.C., Chang, M.J.: Vibration and buckling analysis of internally cracked square plates by the MLS-Ritz approach. Int. J. Struct. Stab. Dyn. 18(09), 1850105 (2018)

    Article  MathSciNet  Google Scholar 

  13. Ismail, R., Cartmell, M.: An investigation into the vibration analysis of a plate with a surface crack of variable angular orientation. J. Sound Vib. 331(12), 2929–2948 (2012)

    Article  Google Scholar 

  14. Krawczuk, M.: Natural vibrations of rectangular plates with a through crack. Arch. Appl. Mech. 63(7), 491–504 (1993)

    MATH  Google Scholar 

  15. Lei, Z., Zhang, L., Liew, K.: Modeling large amplitude vibration of matrix cracked hybrid laminated plates containing CNTR-FG layers. Appl. Math. Model. 55, 33–48 (2018)

    Article  MathSciNet  Google Scholar 

  16. Leissa, A.W.: Vibration of Plates. Acoustical Society of America, New York (1993)

    Google Scholar 

  17. Liew, K., Hung, K., Lim, M.: A solution method for analysis of cracked plates under vibration. Eng. Fract. Mech. 48(3), 393–404 (1994)

    Article  Google Scholar 

  18. Liew, K., Xiang, Y., Kitipornchai, S.: Research on thick plate vibration: a literature survey. J. Sound Vib. 180(1), 163–176 (1995)

    Article  MATH  Google Scholar 

  19. Milazzo, A., Benedetti, I., Gulizzi, V.: An extended ritz formulation for buckling and post-buckling analysis of cracked multilayered plates. Composite Struct. 201, 980–994 (2018)

    Article  Google Scholar 

  20. Milazzo, A., Benedetti, I., Gulizzi, V.: A single-domain ritz approach for buckling and post-buckling analysis of cracked plates. Int. J. Solids Struct. 159, 221–231 (2019)

    Article  Google Scholar 

  21. Milazzo, A., Oliveri, V.: Post-buckling analysis of cracked multilayered composite plates by pb-2 Rayleigh–Ritz method. Composite Struct. 132, 75–86 (2015)

    Article  Google Scholar 

  22. Murthy, M.V.V., Raju, K.N., Viswanath, S.: On the bending stress distribution at the tip of a stationary crack from reissner’s theory. Int. J. Fract. 17(6), 537–552 (1981)

    Article  MATH  Google Scholar 

  23. Raju, K., Hinton, E.: Nonlinear vibrations of thick plates using mindlin plate elements. Int. J. Numer. Methods Eng. 15(2), 249–257 (1980)

    Article  MATH  Google Scholar 

  24. Reddy, J.: Theory and analysis of elastic plates and shells. CRC Press, Boca Raton (2006)

    Google Scholar 

  25. Ribeiro, P.: Non-linear free periodic vibrations of variable stiffness composite laminated plates. Nonlinear Dyn. 70(2), 1535–1548 (2012)

    Article  MathSciNet  Google Scholar 

  26. Sathyamoorthy, M.: Nonlinear vibration analysis of plates: a review and survey of current developments. Appl. Mech. Rev. 40, 1553 (1987)

    Article  Google Scholar 

  27. Solecki, R.: Bending vibration of a simply supported rectangular plate with a crack parallel to one edge. Eng. Fract. Mech. 18(6), 1111–1118 (1983)

    Article  Google Scholar 

  28. Stahl, B., Keer, L.: Vibration and stability of cracked rectangular plates. Int. J. Solids Struct. 8(1), 69–91 (1972)

    Article  MATH  Google Scholar 

  29. Su, R., Leung, A., Wong, S.: Vibration of cracked kirchhoff’s plates. Key Eng. Mater. 145–149, 167–172 (1998)

    Google Scholar 

  30. Swain, P., Adhikari, B., Dash, P.: A higher-order polynomial shear deformation theory for geometrically nonlinear free vibration response of laminated composite plate. Mech. Adv. Mater. Struct. (2017). https://doi.org/10.1080/15376494.2017.1365981. Article in Press

  31. Viola, E., Tornabene, F., Fantuzzi, N.: Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape. Composite Struct. 106, 815–834 (2013)

    Article  Google Scholar 

  32. Yuan, J., Dickinson, S.: The flexural vibration of rectangular plate systems approached by using artificial springs in the Rayleigh–Ritz method. J. Sound Vib. 159(1), 39–55 (1992)

    Article  MATH  Google Scholar 

  33. Zehnder, A.T., Potdar, Y.K.: Williams meets von karman: mode coupling and nonlinearity in the fracture of thin plates. Int. J. Fract. 93(1), 409 (1998)

    Google Scholar 

  34. Zehnder, A.T., Viz, M.J.: Fracture mechanics of thin plates and shells under combined membrane, bending, and twisting loads. Appl. Mech. Rev. 58(1), 37–48 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Milazzo.

A Plate inertia properties and mass matrix

A Plate inertia properties and mass matrix

The inertia matrices are defined as

$$\begin{aligned} \varvec{J}_0 = \left[ \begin{array}{lll} J_0 &{} 0 &{} 0 \\ 0 &{} J_0 &{} 0\\ 0 &{} 0 &{} J_0 \end{array}\right] , \quad \varvec{J}_1 = \left[ \begin{array}{ll} J_1 &{} 0 \\ 0 &{} J_1 \\ 0 &{} 0 \end{array}\right] , \quad \varvec{J}_2 = \left[ \begin{array}{lll} J_2 &{} 0 &{} 0 \\ 0 &{} J_2 &{} 0\\ 0 &{} 0 &{} J_2 \end{array}\right] , \end{aligned}$$
(A1)

where denoted by \(\rho\) the material density, \(J_0\), \(J_1\) and \(J_2\) are the plate mass moments of inertia given by

$$\begin{aligned} J_k =\int _h \rho \, x_3^k \, dx_3 \end{aligned}$$
(A2)

The mass matrix is deduced applying the variational calculus to the second integral of the functional \(\varPi\) after its discretization via Eqs. (2) To this aim, the plate generalized displacements approximation is formally rearranged in compact matricial form as

figure a

where the Ritz coefficients \({C_{\chi }}_{mn}^{\langle k\rangle }\) (\(\chi \in \{u_1,u_2,u_3,\theta _1,\theta _2\}\) and \(k=0,1,2,3,4\)) are arranged in the column vectors \(\varvec{X}_{\chi }\) with a corresponding arrangement of the approximation functions in the row vectors \(\varvec{\varPhi }_{\chi }\). Substituting this expression in the second integral of \(\varPi\), one obtains

$$\begin{aligned}&\frac{1}{2}\, \omega ^2\int _{\varOmega } \left[ \, \varvec{u}^T \varvec{J}_0 \varvec{u} + \varvec{u}^T \varvec{J}_1 \varvec{\vartheta } + \varvec{\vartheta }^T \varvec{J}_1^T \varvec{u} + \varvec{\vartheta }^T \varvec{J}_2 \varvec{\vartheta } \,\right] d\varOmega \nonumber \\&\quad =\frac{1}{2}\, \omega ^2 \varvec{X}^T\int _{\varOmega } \left[ \, \varvec{\varPsi }_u^T \varvec{J}_0 \varvec{\varPsi }_u + \varvec{\varPsi }_u^T \varvec{J}_1 \varvec{\varPsi }_\vartheta \right. \nonumber \\&\left. \qquad + \varvec{\varPsi }_\vartheta ^T \varvec{J}_1^T \varvec{\varPsi }_\vartheta + \varvec{\varPsi }_\vartheta ^T \varvec{J}_2 \varvec{\varPsi }_\vartheta \,\right] d\varOmega \varvec{X}= \frac{1}{2}\, \omega ^2 \varvec{X}^T\varvec{M}\varvec{X} \end{aligned}$$
(A4)

which define the mass matrix as

$$\begin{aligned} \varvec{M}= \int _{\varOmega } \left[ \, \varvec{\varPsi }_u^T \varvec{J}_0 \varvec{\varPsi }_u + \varvec{\varPsi }_u^T \varvec{J}_1 \varvec{\varPsi }_\vartheta + \varvec{\varPsi }_\vartheta ^T \varvec{J}_1^T \varvec{\varPsi }_\vartheta + \varvec{\varPsi }_\vartheta ^T \varvec{J}_2 \varvec{\varPsi }_\vartheta \,\right] d\varOmega \end{aligned}$$
(A5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetti, I., Gulizzi, V. & Milazzo, A. X-Ritz Solution for Nonlinear Free Vibrations of Plates with Embedded Cracks. Aerotec. Missili Spaz. 98, 75–83 (2019). https://doi.org/10.1007/s42496-019-00006-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42496-019-00006-5

Keywords

Navigation