Skip to main content
Log in

Numerical Analysis of Temperature Distribution in AA1100 Friction-Stir Welded Joints by Finite Difference Approximation

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

The aim of the research is to evaluate the 3-D temperature distribution in the friction stir welding (FSW) joints of AA1100 alloy plates by using Finite difference method. The theoretical results are correlated with experimental output in terms of temperature profiles of the weld zones. Microstructure analysis and tensile test have been conducted to determine the joint quality that strongly depends on the amount of heat generation which again is governed by the processing parameters. Microstructure of the weld samples clearly shows the grain refinement in the weld zone. The friction coefficient is also an important factor that totally depends on the tool pin design. More is the friction; sound welds are produced with minimum defects and an enhanced weld strength. This process finds its applications in the automotive industries as the demand for better performance in joining components for vehicles prompts the implementation of aluminium alloy FSW technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith, C. J. Dawes. Friction Welding, October 24 1995, US Patent 5, 460, 317.

  2. P.A. Colegrove, H.R. Shercliff, R. Zettler, Model for predicting heat generation and temperature in friction stir welding from the material properties. Sci. Technol. Weld. Join. 12(4), 284–297 (2007). https://doi.org/10.1179/174329307X197539

    Article  Google Scholar 

  3. H.B. Schmidt, J.H. Hattel, Thermal modeling of friction stir welding. Scripta Mater. 58, 332–337 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.008

    Article  Google Scholar 

  4. T.T. Feng, G.J. Fan, H. Zhang, L.F. Xu, Study on contact coefficient of 6061 Al-Alloy using friction stir Welding. IOP Conf. Series: Mater Sci Eng 382, 1–5 (2018). https://doi.org/10.1088/1757-899X/382/2/022086

    Article  Google Scholar 

  5. T.F. Flint, J.A. Francis, M.C. Smith, A semi-analytical solution for the transient temperature field generated by a volumetric heat source developed for the simulation of friction stir welding. Int J Thermal Sci 138, 586–595 (2019). https://doi.org/10.1016/j.ijthermalsci.2018.12.049

    Article  Google Scholar 

  6. A.R.S. Essa, M.M.Z. Ahmed, A.K.Y. Ahmed Mohamed, A.E. El-Nikhaily, An analytical model of heat generation for eccentric cylindrical pin in friction stir welding. J Mater Res Technol. 5(3), 234–240 (2016). https://doi.org/10.1016/j.jmrt.2015.11.009

    Article  Google Scholar 

  7. S. Salimi, P. Bahemmat, M. Haghpanahi, A 3D transient analytical solution to the temperature field during dissimilar welding processes. Int. J. Mech. Sci. 79, 66–74 (2014). https://doi.org/10.1016/j.ijmecsci.2013.11.015

    Article  Google Scholar 

  8. M. Haghpanahi, S. Salimi, P. Bahemmat, S. Sima, 3-D transient analytical solution based on Green’s function to temperature field in friction stir welding. Appl Mathematical Model 37, 9865–9884 (2013). https://doi.org/10.1016/j.apm.2013.05.034

    Article  Google Scholar 

  9. Moataz M. Attallah, Microstructure-Property development in Friction stir Welds of Aluminium based alloys, PhD Thesis, University of Birmingham, (2007)

  10. B. Zhang, X. Chen, K. Pan, M. Li, J. Wang, Thermo-mechanical simulation using microstructure-based modeling of friction stir spot welded AA 6061–T6. J. Manuf. Process. 37, 71–81 (2019). https://doi.org/10.1016/j.jmapro.2018.11.010

    Article  Google Scholar 

  11. H. Robe, C. Claudin, J.M. Bergheau, E. Feulvarch, R-ALE simulation of heat transfer during friction stir welding of an AA2xxx/AA7xxx joint on a large process window. Int. J. Mech. Sci. 155, 31–40 (2019). https://doi.org/10.1016/j.ijmecsci.2019.02.029

    Article  Google Scholar 

  12. B. Bagheri, M. Abbasi, M. Givi, Effects of vibration on microstructure and thermal properties of friction stir spot welded (FSSW) Aluminum Alloy (Al5083). Int. J. Precis. Eng. Manuf. 20, 1219–1227 (2019). https://doi.org/10.1007/s12541-019-00134-9

    Article  Google Scholar 

  13. H. Li, J. Gao, Q. Li, A. Galloway, A. Toumpis, Effect of friction stir welding tool design on welding thermal efficiency. Sci. Technol. Weld. Join. 24, 156–162 (2018). https://doi.org/10.1080/13621718.2018.1495868

    Article  Google Scholar 

  14. J.F. Villegas, J.V. Dominguez, G.V. Ochoa, J. Unfried-Silgado, Thermo-mechanical modeling of friction-stir welding tool used in aluminum alloys joints. Contemp Eng Sci 10(34), 1659–1667 (2017). https://doi.org/10.12988/ces.2017.711156

    Article  Google Scholar 

  15. Y. Xiao, H. Zhan, Y. Gu, Q. Li, Modeling heat transfer during friction stir welding using a meshless particle method. Int J Heat Mass Trans 104, 288–300 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.047

    Article  Google Scholar 

  16. Z. Zhang, Z.J. Tan, A multi scale strategy for simulation of microstructural evolutions in friction stir welding of duplex titanium alloy. High Temp Mater Proc 38, 485–497 (2019). https://doi.org/10.1515/htmp-2018-0148

    Article  Google Scholar 

  17. K.A. Fraser, L. St-Georges, L.I. Kiss, Optimization of friction stir welding tool advance speed via monte-carlo simulation of the friction stir welding process. Mater 7, 3435–3452 (2014). https://doi.org/10.3390/ma7053435

    Article  Google Scholar 

  18. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater Sci Eng R Reports 50(1–2), 1–78 (2005). https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  19. W. Cheney, D. Kincaid. Numerical mathematics and Computing, 6th edition, Brooks/Cole Publishing Company, California

  20. N.P. Senapati, R.K. Bhoi, Grain size optimization using PSO technique for maximum tensile strength of friction stir-welded joints of AA1100 aluminium. Arab. J. Sci. Eng. 45, 5647–5656 (2020). https://doi.org/10.1007/s13369-020-04510-w

    Article  Google Scholar 

  21. S.M. Bayazida, H. Farhangia, A. Ghahramani, Effect of pin profile on defects of friction stir welded 7075 aluminum alloy. Procedia Mater Sci 11, 12–16 (2015). https://doi.org/10.1016/j.mspro.2015.11.013

    Article  Google Scholar 

  22. S.A. Hussein, S. Thiru, R. Izamshah, A.S.M. Tahir, Unstable temperature distribution in friction stir welding. Adv Mater Sci Eng 2014, 1–8 (2014). https://doi.org/10.1155/2014/980636

    Article  Google Scholar 

  23. S. Verma, G. Meenu, J.P. Misra, Study on temperature distribution during Friction Stir Welding of 6082 aluminum alloy, 5th Int Conf Mater Process Charac (ICMPC 2016). Mater Today: Proceed 4, 1350–1356 (2017). https://doi.org/10.1016/j.matpr.2017.01.156

    Article  Google Scholar 

  24. A. Heidarzadeh, M. Jabbari, M. Esmaily, Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int. J. Adv. Manuf. Technol. 77, 1819–1829 (2014). https://doi.org/10.1007/s00170-014-6543-7

    Article  Google Scholar 

  25. K.N. Salloomi, F.I. Hussein, S.N.M. Al-Sumaidae, Temperature and stress evaluation during three different phases of friction stir welding of AA 7075–T651 alloy. Modell Simul Eng (2020). https://doi.org/10.1155/2020/3197813

    Article  Google Scholar 

  26. H.J. Aval, S. Serajzadeh, A.H. Kokabi, Experimental and theoretical evaluations of thermal histories and residual stresses in dissimilar friction stir welding of AA5086-AA6061. Int. J. Adv. Manuf. Technol. 61, 149–160 (2012). https://doi.org/10.1007/s00170-011-3713-8

    Article  Google Scholar 

  27. D.K. Yaduwanshi, S. Bag, S. Pal, Heat transfer analyses in friction stir welding of aluminium alloy. Proc Inst Mech Eng Part B (2014). https://doi.org/10.1177/0954405414539297

    Article  Google Scholar 

  28. M. Zamani, Al-Si Cast Alloys - Microstructure and Mechanical Properties at Ambient and Elevated Temperature, Licentiate Thesis, Department of Materials and Manufacturing, School of Engineering, Jönköping University, Jönköping, Sweden (2015), pp. 3–15.

  29. L. Shi, C.S. Wu, Transient model of heat transfer and material flow at different stages of friction stir welding process. J. Manuf. Process. 25, 323–339 (2017). https://doi.org/10.1016/j.jmapro.2016.11.008

    Article  Google Scholar 

  30. N.D. Ghetiya, K.M. Patel, A.B. Patel, Prediction of temperature at weldline in air and immersed friction stir welding and its experimental validation. Int. J. Adv. Manuf. Technol. 79, 1239–1246 (2015). https://doi.org/10.1007/s00170-015-6906-8

    Article  Google Scholar 

  31. J.Y. Sheikh-Ahmad, F. Ozturk, F. Jarrar, Z. Evis, Thermal history and microstructure during friction stir welding of Al–Mg alloy. Int. J. Adv. Manuf. Technol. 86, 1071–1081 (2016). https://doi.org/10.1007/s00170-015-8239-z

    Article  Google Scholar 

  32. K. Kumar, C. Kalyan, S.V. Kailas, T.S. Srivatsan, An investigation of friction during friction stir welding of metallic materials. Mater. Manuf. Process. 24(4), 438–445 (2009). https://doi.org/10.1080/10426910802714340

    Article  Google Scholar 

  33. B. Meyghani, M. Awang, S. Emamian, A mathematical formulation for calculating temperature dependent friction coefficient values: application in friction stir welding (FSW). Defect and Diffusion Forum, ISSN 1662–9507(379), 73–82 (2017)

    Article  Google Scholar 

  34. H.J. Liu, H. Fujii, M. Maeda, K. Nogi, Mechanical properties of friction stir welded joints of 1050–H24 aluminium alloy. Sci. Technol. Weld. Join. 8(6), 450–454 (2003). https://doi.org/10.1179/136217103225005598

    Article  Google Scholar 

  35. F.F. Wang, W.Y. Li, J. Shen, S.Y. Hu, J. Santos, Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al–Li alloy. Mater. Des.. 86, 933–940 (2015). https://doi.org/10.1016/j.matdes.2015.07.096

    Article  Google Scholar 

  36. Z.L. Hu, X.S. Wang, S.J. Yuan, Quantitative investigation of the tensile plastic deformation characteristic and microstructure for friction stir welded 2024 aluminum alloy. Mater Charact 73, 114–123 (2012). https://doi.org/10.1016/j.matchar.2012.08.007

    Article  Google Scholar 

  37. Z. Chen, S. Li, L. H. Hihara, Microstructure, mechanical properties and corrosion of friction stir welded 6061 Aluminium alloy, Hawaii Corrosion Laboratory, University of Hawaii at Manoa, Honolulu, HI 96822, USA

  38. H.J. Liu, J.C. Hou, H. Guo, Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061–T6 aluminum alloy. Mater. Des. 50, 872–878 (2013). https://doi.org/10.1016/j.matdes.2013.03.105

    Article  Google Scholar 

  39. Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Superplastic deformation behavior of friction stir processed. 7075 Al alloy. Acta Mater. 50, 4419–4430 (2002). https://doi.org/10.1016/S1359-6454(02)00278-1

    Article  Google Scholar 

  40. J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Microstructural investigation of friction stir welded 7050–T651 aluminium. Acta Mater. 5, 713–729 (2003). https://doi.org/10.1016/S1359-6454(02)00449-4

    Article  Google Scholar 

  41. C. Hamilton, S. Dymek, M. Blicharski, A model of material flow during friction stir welding. Mater Charact 59, 1206–1214 (2008). https://doi.org/10.1016/j.matchar.2007.10.002

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pallavi Senapati.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapati, N.P., Bhoi, R.K. Numerical Analysis of Temperature Distribution in AA1100 Friction-Stir Welded Joints by Finite Difference Approximation. Multiscale Sci. Eng. (2024). https://doi.org/10.1007/s42493-024-00114-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42493-024-00114-w

Keywords

Navigation