Skip to main content
Log in

Regulating a firm with bilateral unknown demands

  • Original Article
  • Published:
Journal of Data, Information and Management Aims and scope Submit manuscript

Abstract

We consider the impact of bilateral unknown information about the market capacity on the optimal regulatory policies in a regulation problem. We first analyze how to solve such problem when the market capacity is full information, a case which allows us to obtain most of key insights from regulatory models. We then extend the analysis to the bilateral unknown information case. We do this by assuming that neither the regulator nor the firm knows exactly the true market capacity, but they can make respective estimates about it, the same or different. The results show that when the regulator and the firm make the same estimate about the true market capacity, the optimal price is distorted downwards from that under full information, and the transfer payment is distorted upwards from that under full information, but bilateral unknown information does not necessarily result in the distortion of the firm’s output. When the regulator and the firm make the different estimates about the true market capacity, and if the firm’s estimate is more optimistic than the regulator’s, the optimal price and output are more than those under the case that they have the same estimate. Contrary to this case, if the firm’s estimate is more pessimistic than the regulator’s, the optimal price and output are less than those under the case that they have the same estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguirre I (2004) Regulating a monopolist with unknown demand: costly public funds and the value of private information. Journal of Public Economic Theory 6(5):693–706

    Article  Google Scholar 

  • Armstrong M, Sappington D (2004) Toward a synthesis of models of regulatory policy design with limited information. J Regul Econ 26(1):5–21

    Article  Google Scholar 

  • Armstrong M, Sappington D (2005) Recent developments in the theory of regulation. In: Handbook of industrial organization, vol 3, pp 1557–1700

    Google Scholar 

  • Babich V, Li H, Ritchken P, Wang Y (2012) Contracting with asymmetric demand information in supply chains. Eur J Oper Res 217(2):313–341

    Article  MathSciNet  MATH  Google Scholar 

  • Baron D, Myerson R (1982) Regulating a monopolist with unknown costs. Econometrica 50(4):911–930

    Article  MathSciNet  MATH  Google Scholar 

  • Baron D, Besanko D (1984) Regulating asymmetric information, and auditing. Rand J Econ 15(4):447–470

    Article  Google Scholar 

  • Botero J, Djankov S, Porta R, Silanes F, Shleifer A (2004) The regulation of labor. Q J Econ 119 (4):1339–1382

    Article  Google Scholar 

  • Ertek G, Griffin PM (2002) Supplier and buyer driven channels in a two-stage supply chain. IIE Trans 34 (8):691–700

    Google Scholar 

  • Feng J, Lan Y, Zhao R (2017) Impact of price cap regulation on supply chain contracting between two monopolists. Journal of Industrial and Management Optimization 13(1):347–371

    MathSciNet  MATH  Google Scholar 

  • Georges A, David G (2012) Measuring the joint impact of governance form and economic regulation on airport efficiency. Eur J Oper Res 220(1):187–198

    Article  Google Scholar 

  • Griffin G (1972) The process analysis alternative to statistical cost functions: an application to petroleum refining. Am Econ Rev 62(1/2):46–56

    Google Scholar 

  • Ha A, Zhang H, Tong S (2011) Sharing imperfect demand information in competing supply chains with production diseconomies. Manag Sci 57(3):566–581

    Article  MATH  Google Scholar 

  • Kurata H, Yao DQ, Liu JJ (2007) Pricing policies under direct vs. indirect channel competition and national vs. store brand competition. Eur J Oper Res 180(1):262–281

    Article  MATH  Google Scholar 

  • Kalai E, Kamien MI, Rubinovitch M (1992) Optimal service speeds in a competitive environment. Manag Sci 38(8):1154–1163

    Article  MATH  Google Scholar 

  • Laffont J, Tirole J (1986) Using cost observation to regulate firms. J Polit Econ 94(3):614–641

    Article  Google Scholar 

  • Laffont J, Rochet J (1998) Regulation of a risk averse firm. Games Econom Behav 25(2):149–173

    Article  MATH  Google Scholar 

  • Laffont J, Tirole J (1993) A theory of incentives in procurement and regulation. MIT Press, Cambridge

    Google Scholar 

  • Laffont J, Mortimort D (2002) The theory of incentive: the principal-agent model. Princeton University Press, Princeton

    Book  Google Scholar 

  • Lau AHL, Lau HS, Zhou YW (2006) Considering asymmetrical manufacturing cost information in a two-echelon system that uses priceonly contracts. IIE Trans 38(3):253–271

    Article  Google Scholar 

  • Lewis T, Sappington DEM (1988a) Regulating a monopolist with unknown demand. Am Econ Rev 78 (5):986–998

    Google Scholar 

  • Li T, Zhang H (2015) Information sharing in a supply chain with a make-to-stock manufacturer. Omega 50:115–125

    Article  Google Scholar 

  • Muthuraman K, Aouam T, Rardin R (2008) Regulation of natural gas distribution using policy benchmarks. Oper Res 56(5):1131–1145

    Article  MATH  Google Scholar 

  • Mollick A (2004) Production smoothing in the Japanese vehicle industry. Int J Prod Econ 91(1):63–74

    Article  Google Scholar 

  • Özer Ö, Raz G (2011) Supply chain sourcing under asymmetric information. Prod Oper Manag 20 (1):92–115

    Article  Google Scholar 

  • Porteus E (2002) Foundations of stochastic inventory theory. Stanford Business Books, California

    Google Scholar 

  • Resende M (2008) Efficiency measurement and regulation in US telecommunications: a robustness analysis. Int J Prod Econ 114(1):205–218

    Article  Google Scholar 

  • Riordan M (1984) On delegating price authority to a regulated firm. Rand J Econ 15(1):108–115

    Article  Google Scholar 

  • Sappington D (1983) Optimal regulation of a multiproduct monopoly with unknown technological capabilities. Bell J Econ 14(2):453–463

    Article  Google Scholar 

  • Sappington D, Sibley D (1988) Regulating without cost information: the incremental surplus subsidy scheme. Int Econ Rev 29(2):297–306

    Article  Google Scholar 

  • Thanassoulis E (2000) DEA and its use in the regulation of water companies. Eur J Oper Res 127(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Wu C, Li K, Shi T (2017) Supply chain coordination with two-part tariffs under information asymmetry. Int J Prod Econ 55(9):2575–2589

    Article  Google Scholar 

  • Yao DQ, Yue X, Liu JJ (2008) Vertical cost information sharing in a supply chain with value-adding retailers. Omega 36(5):838–851

    Article  Google Scholar 

  • Yang L, Ng CT (2014) Flexible capacity strategy with multiple market periods under demand uncertainty and investment constraint. Eur J Oper Res 236(2):511–521

    Article  MathSciNet  MATH  Google Scholar 

  • Zeithammer R, Thomadsen R (2013) Vertical differentiation with variety-seeking consumers. Manag Sci 59 (2):390–401

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 71771166, Tianjin Natural Science Foundation under Grant No. 18JCQNJC04200, and partly by a S\(\hat {e}\)r Cymru II COFUND Fellowship, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Lan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof Proof of Theorem 1.

The constraint of Model (4) is binding at the optimum; otherwise, the regulator can decrease t until it binds, i.e., π(p,t,y) = 0. Therefore, the regulator allocates all surplus to the consumer. By π(p,t,y) = 0, we can obtain

$$ t=C(y-bp)-p(y-bp). $$
(23)

Substituting t into the objective function of Model (4) yields

$$ W(p,t,y)= V(y-bp)-C(y-bp). $$
(24)

By \(V^{\prime \prime }(\cdot )\leq 0\) and \(C^{\prime \prime }(\cdot )>0\), we obtain W(p,t,y) is concave with respect to p. Therefore, the optimal price p satisfies the first-order condition

$$ V^{\prime}(y-bp^{*})= C^{\prime}(y-bp^{*}). $$
(25)

The optimal output q follows q = ybp from Eq. 25. It also follows from Eq. 23 that t = C(ybp) − p(ybp). The proof is complete. □

Proof Proof of Theorem 2.

We firstly verify that the objective function (13) is jointly concave with respect to (p,q). The first-order and second-order partial derivatives of E[W(p,q,Y )] with respect to (p,q) can be shown as

$$ \begin{array}{@{}rcl@{}} \frac{\partial{E[W(p,q,Y)]}}{\partial{p}}&=& -bV^{\prime}\left( q-{\int}_{\underline{y}}^{q+bp}F(y)\mathrm{d}y\right)F(q+bp),\\ \frac{\partial{E[W(p,q,Y)]}}{\partial{q}}&=& V^{\prime}\left( q-{\int}_{\underline{y}}^{q+bp}F(y)\text{d}y\right)\left( 1-F(q+bp)\right)\\ &&-C^{\prime}(q),\\ \frac{\partial^{2}{E[W(p,q,Y)]}}{\partial{p^{2}}}&=&b^{2} V^{\prime\prime}\left( q-{\int}_{\underline{y}}^{q+bp}F(y)\mathrm{ d}y\right)F^{2}(q+bp)\\&&-b^{2}V^{\prime}\left( q-{\int}_{\underline{y}}^{q+bp}F(y)\text{d}y\right)F^{\prime}(q+bp),\\ \end{array} $$
(26)
$$ \begin{array}{@{}rcl@{}} \frac{\partial^{2}{E[W(p,q,Y)]}}{\partial{q^{2}}}&= &V^{\prime\prime}\left( q-{\int}_{\underline{y}}^{q+bp}F(y)\mathrm{ d}y\right)\left( 1 - F(q+bp)\right)^{2}\\ &&-V^{\prime}\left( q-{\int}_{\underline{y}}^{q+bp}F(y)\text{d}y\right)F^{\prime}(q+bp)\\ && -C^{\prime\prime}(q), \end{array} $$
(27)
$$ \begin{array}{@{}rcl@{}} \frac{\partial^{2}{E[W(p,q,Y)]}}{\partial{p}\partial{q}}&= &-bV^{\prime\prime}\left( q-{\int}_{\underline{y}}^{q+bp}F(y)\mathrm{ d}y\right)\\ &&~~~\left( 1-F(q+bp)\right)F(q+bp)\\&&-bV^{\prime}\left( q-{\int}_{\underline{y}}^{q+bp}F(y)\text{d}y\right)F^{\prime}(q+bp).\\ \end{array} $$
(28)

By Eqs. 2627 and 28, the Hessian matrix

$$H=\left( \begin{array}{cc} \frac{\partial^{2}{E[W(p,q,Y)]}}{\partial{p^{2}}} & \frac{\partial^{2}{E[W(p,q,Y)]}}{\partial{p}\partial{q}}\\ \frac{\partial^{2}{E[W(p,q,Y)]}}{\partial{q}\partial{p}} & \frac{\partial^{2}{E[W(p,q,Y)]}}{\partial{q^{2}}} \end{array} \right).$$

It follows from \(V^{\prime }(\cdot )>0\) and \(V^{\prime \prime }(\cdot )\leq 0\) that \(\frac {\partial ^{2}{E[W(p,q,Y)]}}{\partial {p^{2}}}<0\), \(\frac {\partial ^{2}{E[W(p,q,Y)]}}{\partial {q^{2}}}<0\), \(\left |H\right |=b^{2}V^{\prime }F^{\prime }C^{\prime \prime }>0\), i.e., H is negative definite, thus E[W(p,q,Y )] is jointly concave with respect to (p,q).

Therefore, the optimal price \(p_{1}^{*}\) and the optimal output \(q_{1}^{*}\) satisfy

$$ \left\{\begin{array}{ll} \displaystyle \frac{\partial{E[W(p_{1}^{*},q_{1}^{*},Y)]}} {\partial{p_{1}}}= V^{\prime}\left( q_{1}^{*}-{\int}_{\underline{y}}^{q_{1}^{*}+bp_{1}^{*}}F(y)\text{d}y\right)F(q_{1}^{*}+bp_{1}^{*})=0,\\[0.5cm] \displaystyle \frac{\partial{E[W(p_{1}^{*},q_{1}^{*},Y)]}}{\partial{q_{1}}}= V^{\prime}\left( q_{1}^{*}-{\int}_{\underline{y}}^{q_{1}^{*}+bp_{1}^{*}}F(y)\text{d}y\right)\left( 1-F(q_{1}^{*}+bp_{1}^{*})\right)=C^{\prime}(q_{1}^{*}). \end{array} \right. $$
(29)

It follows from Eq. 29 that \(p_{1}^{*}=\frac {1}{b}(\underline {y}-q_{1}^{*})\) and \(V^{\prime }(q_{1}^{*})=C^{\prime }(q_{1}^{*})\). Thus, the proof of Theorem 4 is complete. □

Proof Proof of Proposition 1.

It follows from Eq. 5 that \(V^{\prime }(q^{*})=C^{\prime }(q^{*})\), together with Eq. 15 and \(C^{\prime \prime }>0\), we can obtain \(q_{1}^{*}=q^{*}\). Note that \(p_{1}^{*}=\underline {y}-bq_{1}^{*}\) and p = ybq, due to \({y}\geq {\underline {y}}\), it is clear that \(p_{1}^{*}\leq p^{*}\). Comparing Eq. 7 with Eq. 16, applying \(p_{1}^{*}\leq p^{*}\) and \(q_{1}^{*}=q^{*}\), we find immediately \(t_{1}^{*}\geq t^{*}\). The proof is complete. □

Proof Proof of Corollary 1.

It follows from Eq. 24 that

$$ E[W^{*}(p^{*},q^{*},t^{*})]= V(y-bp^{*})-C(y-bp^{*}), $$

i.e.,

$$ E[W^{*}(p^{*},q^{*},t^{*})]= V(q^{*})-C(q^{*}), $$
(30)

and by Eq. 13, we know

$$ E[W_{1}^{*}(p_{1}^{*},q_{1}^{*},t_{1}^{*})]= V\left( q_{1}^{*}-{\int}_{\underline{y}}^{q_{1}^{*}+bp_{1}^{*}}F(y)\text{d}y\right)-C(q_{1}^{*}). $$
(31)

By Eq. 17\(q^{*}=q_{1}^{*}\), together with \(V^{\prime }>0\), comparing Eq. 30 with Eq. 31, it is clear that \(E[W^{*}(p^{*},q^{*},t^{*})]\geq E[W_{1}^{*}(p_{1}^{*},q_{1}^{*},t_{1}^{*})]\). The proof of Corollary 1 is complete. □

Proof Proof of Proposition 2.

For the regulator’s objective function (22), if the optimal price \(p_{2}^{*}\) exists, it should satisfy the first-order condition

$$ \begin{array}{@{}rcl@{}} &&V^{\prime}\left( q_{2}^{*}-{\int}_{\underline{y}}^{q_{2}^{*}+bp_{2}^{*}}F_{1}(y)\text{d}y\right)F_{1}(q_{2}^{*}+bp_{2}^{*})\\ &&\quad= (1-\alpha)\left( {\int}_{\underline{y}}^{q_{2}^{*}+bp_{2}^{*}}[F_{1}(y)-F_{2}(y)]\text{d}y\right)\\&&\quad+(1-\alpha)p_{2}^{*}\left[F_{1}(q_{2}^{*}+bp_{2}^{*})-F_{2}(q_{2}^{*}+bp_{2}^{*})\right]. \end{array} $$
(32)

It follows from Eq. 29 that \(p_{1}^{*}\) satisfies

$$ V^{\prime}\left( q_{1}^{*}-{\int}_{\underline{y}}^{q_{1}^{*}+bp_{1}^{*}}F_{1}(y)\text{d}y\right)F_{1}(q_{1}^{*}+bp_{1}^{*})=0. $$
(33)

To compare \(p_{2}^{*}\) and \(p_{1}^{*}\), let

$$K(p)=V^{\prime}\left( q-{\int}_{\underline{y}}^{q+bp}F_{1}(y)\text{d}y\right)F_{1}(q+bp).$$

By \(V^{\prime }>0\), \(V^{\prime \prime }\leq 0\) and \(F_{1}^{\prime }>0\), differentiating K(p) with respect to p yields

$$-V^{\prime\prime}{F_{1}^{2}}+V^{\prime}F_{1}^{\prime}>0.$$

Therefore, K(p) is increasing with respect to p. Comparing Eq. 32 with Eq. 33, we can obtain \(p_{2}^{*}>p_{1}^{*}\) when F1(y) > F2(y). Correspondingly, \(p_{2}^{*}<p_{1}^{*}\) holds when F1(y) < F2(y).

Similarly, if the optimal output \(q_{2}^{*}\) exists, it should satisfy the first-order condition

$$ \begin{array}{@{}rcl@{}} &&V^{\prime}\left( q_{2}^{*} - {\int}_{\underline{y}}^{q_{2}^{*}+bp_{2}^{*}}F_{1}(y)\mathrm{ d}y\right)\left[1 - F_{1}(q_{2}^{*} + bp_{2}^{*})\right] - C^{\prime}(q_{2}^{*})\\&&=(1-\alpha)p_{2}^{*}\left[F_{2}(q_{2}^{*}+bp_{2}^{*}) -F_{1}(q_{2}^{*}+bp_{2}^{*})\right]. \end{array} $$
(34)

It follows from Eq. 29 that \(q_{1}^{*}\) satisfies

$$ V^{\prime}\left( q_{1}^{*} - {\int}_{\underline{y}}^{q_{1}^{*}+bp_{1}^{*}}F_{1}(y)\text{d}y\right)\left[1 - F_{1}(q_{1}^{*} + bp_{1}^{*})\right]-C^{\prime}(q_{1}^{*}) = 0. $$
(35)

To compare \(q_{2}^{*}\) with \(q_{1}^{*}\), let

$$H(q) = V^{\prime}\left( q - {\int}_{\underline{y}}^{q+bp}F_{1}(y)\text{d}y\right)\left[1 - F_{1}(q + bp)\right]-C^{\prime}(q).$$

By \(V^{\prime }>0\), \(V^{\prime \prime }\leq 0\) and \(C^{\prime \prime }>0\), and differentiating with respect to q yields

$$V^{\prime\prime}(1-F_{1})^{2}-V^{\prime}F_{1}^{\prime}-C^{\prime\prime}<0.$$

Hence, H(q) is decreasing with respect to q. Comparing Eq. 34 with Eq. 35, we can obtain \(q_{2}^{*}>q_{1}^{*}\) when F1(y) > F2(y). Correspondingly, when F1(y) < F2(y), \(q_{2}^{*}<q_{1}^{*}\) holds. The proof of Proposition 2 is complete. □

Lemma 1

Both the optimal price \(p_{2}^{*}\) and the optimal output \(q_{2}^{*}\) are increasing with respect to \(\left [F_{1}(\cdot )-F_{2}(\cdot )\right ]\). In particular, \(p_{2}^{*}\) and \(q_{2}^{*}\) are down to minimum or up to maximum at F1(⋅) = F2(⋅), i.e., \(p_{2}^{*}=p_{1}^{*}\), \(q_{2}^{*}=q_{1}^{*}\).

Proof Proof of Proposition 3.

Similar to the proof of Proposition 2, it is easy to verify \(p_{2}^{*}= p_{1}^{*}\) and \(q_{2}^{*}= q_{1}^{*}\). By Eqs. 12 and 21, together with \(p_{2}^{*}= p_{1}^{*}\) and \(q_{2}^{*}= q_{1}^{*}\), we can obtain \(t_{1}^{*}>t_{2}^{*}\) when F1(y) > F2(y), and \(t_{1}^{*}<t_{2}^{*}\) when F1(y) < F2(y), respectively. The proof of Proposition 3 is complete. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Lan, Y. Regulating a firm with bilateral unknown demands. J. of Data, Inf. and Manag. 1, 117–128 (2019). https://doi.org/10.1007/s42488-019-00011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42488-019-00011-0

Keywords

Navigation