Skip to main content
Log in

A risk-averse multi-item inventory problem with uncertain demand

  • Original Article
  • Published:
Journal of Data, Information and Management Aims and scope Submit manuscript

Abstract

The observed values of demands in real-life inventory problems are sometimes imprecise due to the lack of information and historical data, thus a growing research is committed to study the properties of risk measures in fuzzy inventory optimization problems. In this paper, a risk-averse fuzzy optimization method is adopted for the multi-item inventory problem, in which the demands are described by common possibility distributions. Firstly, three classes of fuzzy inventory optimization models are built by combining the absolute semi-deviation with expected value operator and then model analysis is given for the min-max inventory models. To make the inventory problem tractable and computable, the equivalent forms of the proposed optimization models are discussed. Subsequently, several useful absolute semi-deviation formulas are presented under triangular, trapezoidal and Erlang possibility distributions. Finally, some numerical experiments are performed to highlight the modeling idea, and the computational results demonstrate the effectiveness of the solution method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bai XJ, Liu YK (2014) Robust optimization of supply chain network design in fuzzy decision system. J Intell Manuf 27(6):1131–1149

    Google Scholar 

  • Baykasoglu A, Gocken T (2011) Solving fully fuzzy mathematical programming model of EOQ problem with a direct approach based on fuzzy ranking and PSO. J Intell Fuzzy Syst 22(5-6):237–251

    MathSciNet  MATH  Google Scholar 

  • Bean WL, Joubert JW, Luhandjula MK (2016) Inventory management under uncertainty: a military application. Comput Ind Eng 96:96–107

    Google Scholar 

  • Borgonovo E, Peccati L (2009) Financial management in inventory problems: Risk averse vs risk neutral policies. Int J Prod Econ 118(1):233–242

    Google Scholar 

  • Chang SY, Yeh TY (2013) A two-echelon supply chain of a returnable product with fuzzy demand. Appl Math Model 37(6):4305–4315

    MathSciNet  MATH  Google Scholar 

  • Chen SP, Ho YH (2013) Optimal inventory policy for the fuzzy newsboy problem with quantity discounts. Inf Sci 228:75–89

    MathSciNet  MATH  Google Scholar 

  • Chen S, Wang H, Xie Y, Qi C (2014) Mean-risk analysis of radio frequency identification technology in supply chain with inventory misplacement: Risk-sharing and coordination. Omega 46:86–103

    Google Scholar 

  • Chen Y, Liu Y, Wu X (2012) A new risk criterion in fuzzy environment and its application. Appl Math Model 36(7):3007–3028

    MathSciNet  MATH  Google Scholar 

  • Choi TM (2016) Multi-period risk minimization purchasing models for fashion products with interest rate, budget, and profit target considerations. Ann Oper Res 237(1-2):77–98

    MathSciNet  MATH  Google Scholar 

  • Choi S, Park K (2015) A risk-averse inventory model with markovian purchasing costs. Math Probl Eng. https://doi.org/10.1155/2015/925765

    MathSciNet  MATH  Google Scholar 

  • Dash JK, Sahoo A (2015) Optimal solution for a single period inventory model with fuzzy cost and demand as a fuzzy random variable. J Intell Fuzzy Syst 28(3):1195–1203

    MathSciNet  Google Scholar 

  • Feng XQ, Meng M, Liu YK (2015) Modeling credibilistic data envelopment analysis under fuzzy input and output data. J Uncertain Syst 9:230–240

    Google Scholar 

  • Guo ZZ, Liu YK (2018) Modelling single-period inventory problem by distributionally robust fuzzy optimization method. J Intell Fuzzy Syst 35(1):1007–1019

    Google Scholar 

  • He J, Jiang X, Wang J, Zhu D, Zhen L (2009) Var methods for the dynamic impawn rate of steel in inventory financing under autocorrelative return. Eur J Oper Res 223(1):106–115

    MathSciNet  MATH  Google Scholar 

  • Ji Q, Wang Y, Hu X (2016) Optimal production planning for assembly systems with uncertain capacities and random demand. Eur J Oper Res 253(2):383–391

    MathSciNet  MATH  Google Scholar 

  • Katariya AP, Cetinkaya S, Tekin E (2014) On the comparison of risk-neutral and risk-averse newsvendor problems. J Oper Res Soc 65(7):1090–1107

    Google Scholar 

  • Lee SD, Yang CM, Lan SC (2016) Economic lot sizing in a production system with random demand. Int J Syst Sci 47(5):1142–1154

    MathSciNet  MATH  Google Scholar 

  • Li X, Wong HS, Wu S (2012) A fuzzy minimax clustering model and its applications. Inf Sci 186(1):114–125

    Google Scholar 

  • Li YN, Liu Y (2016) Optimizing fuzzy multi-item single-period inventory problem under risk-neutral criterion. J Uncertain Syst 10(2):130–141

    Google Scholar 

  • Li YZ, Wu QH (2016) Downside risk constrained probabilistic optimal power flow with wind power integrated. IEEE T Power Syst 31(2):1649–1650

    MathSciNet  Google Scholar 

  • Liang B, Park H (2007) Risk measures for hedge funds: a cross-sectional approach. Eur Financ Manag 13(2):333–370

    Google Scholar 

  • Liu Y, Liu YK (2017) Distributionally robust fuzzy project portfolio optimization problem with interactive returns. Appl Soft Comput 56:655–668

    Google Scholar 

  • Liu YK, Gao J (2007) The independent of fuzzy variables with applications to fuzzy random optimization. Int J Uncertain Fuzz 15:1–20

    Google Scholar 

  • Liu YK, Liu B (2003) Expected value operator of random fuzzy variable and random fuzzy expected value models. Int J Uncertain Fuzz 11(2):195–215

    MathSciNet  MATH  Google Scholar 

  • Lu H, Wang H, Xie Y, Li H (2016) Construction material safety-stock determination under nonstationary stochastic demand and random supply yield. Trans Eng Manag 63(2):201–212

    Google Scholar 

  • Sawik T (2013) Selection of resilient supply portfolio under disruption risks. Omega 41(2):259–269

    Google Scholar 

  • Shaikh AA, Bhunia AK, Cardenas-Barron LE, Sahoo L, Tiwari S (2018) A fuzzy inventory model for a deteriorating item with variable demand, permissible delay in payments and partial backlogging with shortage follows inventory (SFI) policy. Int J Fuzzy Syst 20(5):1606–1623

    MathSciNet  Google Scholar 

  • Shi Y, Alwan LC, Tang C, Yue XH (2019) A newsvendor model with autocorrelated demand under a time-consistent dynamic CVar measure. IISE Trans 51(6):653–671

    Google Scholar 

  • Stadje M (2010) Extending dynamic convex risk measures from discrete time to continuous time: a convergence approach. Insur Math Econ 47(3):391–404

    MathSciNet  MATH  Google Scholar 

  • Tekin M, Ozekici S (2015) Mean-variance newsvendor model with random supply and financial hedging. IIE Trans 47(9):910–928

    Google Scholar 

  • Amiri-Aref M, Klibi W, Babai MZ (2018) The multi-sourcing location inventory problem with stochastic demand. Eur J Oper Res 266(1):72–87

    MathSciNet  MATH  Google Scholar 

  • Wu M, Zhu SX, Teunter RH (2013) The risk-averse newsvendor problem with random capacity. Eur J Oper Res 231(2):328–336

    MathSciNet  MATH  Google Scholar 

  • Yang GQ, Liu YK, Yang K (2015) Multi-objective biogeography-based optimization for supply chain network design under uncertainty. Comput Ind Eng 85:145–156

    Google Scholar 

  • Zhai H, Liu YK, Yang K (2016) Modeling two-stage UHL problem with uncertain demands. Appl Math Model 40(4):3029–3048

    MathSciNet  MATH  Google Scholar 

  • Zied H, Sofiene D, Nidhal R (2014) Joint optimisation of maintenance and production policies with subcontracting and product returns. J Intell Manuf 25(3):589–602

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.61773150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Theorem 1

Proof

If we denote η = 1/ξ, then the credibility distribution of η reads that

$$ \begin{array}{@{}rcl@{}} \text{Cr}\{\eta \leq r\}=\left\{ \begin{array}{llll} &0,&& 0<r<\frac{1}{r_{3}}\\ &\frac{r_{3}-\frac{1}{r}}{2(r_{3}-r_{2})},&& \frac{1}{r_{3}}\leq r<\frac{1}{r_{2}}\\ &\frac{2r_{2}-r_{1}-\frac{1}{r}}{2(r_{2}-r_{1})},&& \frac{1}{r_{2}}\leq r<\frac{1}{r_{1}}\\ &1,&& r\geq\frac{1}{r_{1}}. \end{array} \right. \end{array} $$

Since the expected value \(m=\frac {1}{2(r_{3}-r_{2})}\ln {\frac {r_{3}}{r_{2}}}+\frac {1}{2(r_{2}-r_{1})}\ln {\frac {r_{2}}{r_{1}}}\) has computed in Li and Liu (2016), then if \(m\in [\frac {1}{r_{3}},\frac {1}{r_{2}})\), the absolute semi-deviation value E[(ηm)+] is as follows:

$$ \begin{array}{@{}rcl@{}} \mathrm{E}[(\eta-m)^{+}]&=&{\int}_{(m,+\infty)}(r-m)\mathrm{d}\text{Cr}\{\eta\leq r\}\\ &=&{\int}_{\left( m,\frac{1}{r_{2}}\right)}(r-m)\mathrm{d}\frac{r_{3}-\frac{1}{r}}{2(r_{3}-r_{2})}\\ &&+{\int}_{\left( \frac{1}{r_{2}},\frac{1}{r_{1}}\right)}(r-m)\mathrm{d}\frac{2r_{2}-r_{1}-\frac{1}{r}}{2(r_{2}-r_{1})}\\ &&+{\int}_{\left( \frac{1}{r_{1}},+\infty\right)}(r-m)\d1\\ &=&\frac{1}{2(r_{3}-r_{2})}\ln \frac{1}{r_{2}m}+\frac{1}{2(r_{2}-r_{1})}\ln \frac{r_{2}}{r_{1}}\\ &&+\frac{m(2r_{2}-r_{3})-1}{2(r_{3}-r_{2})}. \end{array} $$

Similarly, if \(m\in \left [\frac {1}{r_{2}},\frac {1}{r_{1}}\right ]\), the absolute semi-deviation value E[(ηm)+] is computed by

$$ \mathrm{E}[(\eta-m)^{+}]=\frac{1}{2(r_{2}-r_{1})}\ln \frac{1}{r_{1}m}+\frac{mr_{1}-1}{2(r_{2}-r_{1})}. $$

We next to show that when r1 = 0, the absolute semi-deviation value E[(ηm)+] does not exist. In fact, the credibility distribution of η in this case reads that

$$ \begin{array}{@{}rcl@{}} \text{Cr}\{\eta \geq r\}=\left\{ \begin{array}{llll} &1, &&0<r<\frac{1}{r_{3}}\\ &\frac{(r_{3}-2r_{2})r+1}{2r(r_{3}-r_{2})},&& \frac{1}{r_{3}}\leq r<\frac{1}{r_{2}}\\ &\frac{1}{2r_{2}r},&& r\geq \frac{1}{r_{2}}. \end{array} \right. \end{array} $$

Thus, the expected value m is computed by

$$ \begin{array}{@{}rcl@{}} m&=&{\int}_{0}^{+\infty}\text{Cr}\{\eta \geq r\}\text{dr}\\ &=&\frac{1}{2(r_{3}-r_{2})}\ln{\frac{r_{3}}{r_{2}}}+\frac{1}{2r_{2}}(1+\lim_{d\rightarrow+\infty}\ln{dr_{2}}), \end{array} $$

which implies the expected value m does not exist, so the absolute semi-deviation value E[(ηm)+] does not exist either. The proof of theorem is complete. □

1.2 Proof of Theorem 2

Proof

If we denote η = 1/ξ, then the credibility distribution of η reads that

$$ \begin{array}{@{}rcl@{}} \qquad &\text{Cr}\{\eta \leq r\}=\left\{ \begin{array}{llll} &0, && 0<r<\frac{1}{r_{4}}\\ &\frac{r_{4}-\frac{1}{r}}{2(r_{4}-r_{3})},&& \frac{1}{r_{4}}\leq r<\frac{1}{r_{3}}\\ &\frac{1}{2}, &&\frac{1}{r_{3}}\leq r<\frac{1}{r_{2}}\\ &\frac{2r_{2}-r_{1}-\frac{1}{r}}{2(r_{2}-r_{1})}, &&\frac{1}{r_{2}}\leq r<\frac{1}{r_{1}}\\ &1, && r\geq\frac{1}{r_{1}}. \end{array} \right. \end{array} $$

Since the expected value \(m=\frac {1}{2(r_{4}-r_{3})}\ln {\frac {r_{4}}{r_{3}}}+\frac {1}{2(r_{2}-r_{1})}\ln {\frac {r_{2}}{r_{1}}}\) has computed in Li and Liu (2016), if \(m\in \left [\frac {1}{r_{4}},\frac {1}{r_{3}}\right )\), the absolute semi-deviation value E[(ηm)+] is as follows:

$$ \begin{array}{@{}rcl@{}} \mathrm{E}[(\eta-m)^{+}]&=&{\int}_{(m,+\infty)}(r-m)\mathrm{d}\text{Cr}\{\eta \leq r\}\\ &=&\frac{1}{2(r_{4}-r_{3})}\ln \frac{1}{r_{3}m}+\frac{1}{2(r_{2}-r_{1})}\ln \frac{r_{2}}{r_{1}}\\ &&+\frac{m(2r_{3}-r_{4})-1}{2(r_{4}-r_{3})}. \end{array} $$

Similarly, if \(m\in \left [\frac {1}{r_{3}},\frac {1}{r_{2}}\right )\), the absolute semi-deviation value E[(ηm)+] is computed by

$$ \mathrm{E}[(\eta-m)^{+}]=\frac{1}{2(r_{2}-r_{1})}\ln \frac{r_{2}}{r_{1}}-\frac{m}{2}, $$

if \(m\in \left [\frac {1}{r_{2}},\frac {1}{r_{1}}\right ]\), the absolute semi-deviation value E[(ηm)+] is computed by

$$ \mathrm{E}[(\eta-m)^{+}]=\frac{1}{2(r_{2}-r_{1})}\ln \frac{1}{r_{1}m}+\frac{mr_{1}-1}{2(r_{2}-r_{1})}. $$

The rest of theorem is similar to prove. The proof of theorem is complete. □

1.3 Proof of Theorem 3

Proof

If demand ξ is an Erlang fuzzy variable Er(λ, r), then the credibility distribution of η reads that

$$ \begin{array}{@{}rcl@{}} \text{Cr}\{\eta \leq x\}=\left\{ \begin{array}{llll} &\frac{1}{2}\left( \frac{1}{\lambda rx}\right)^{r}e^{r-\frac{1}{\lambda x}},&& \frac{1}{r_{2}}\leq x< \frac{1}{\lambda r}\\ &1-\frac{1}{2}\left( \frac{1}{\lambda rx}\right)^{r}e^{r-\frac{1}{\lambda x}},&& \frac{1}{\lambda r}\leq x\leq \frac{1}{r_{1}}. \end{array} \right. \end{array} $$

The expected value m of η is computed by

$$ \begin{array}{@{}rcl@{}} m&=&{\int}_{0}^{+\infty}\text{Cr}\{\eta \geq x\}\text{dx}\\ &=&{\int}_{\frac{1}{r_{2}}}^{\frac{1}{\lambda r}}\left[1-\frac{1}{2}\left( \frac{1}{\lambda rx}\right)^{r}e^{r-\frac{1}{\lambda x}}\right]\text{dx}+{\int}_{\frac{1}{\lambda r}}^{\frac{1}{r_{1}}}\frac{1}{2}\left( \frac{1}{\lambda rx}\right)^{r}e^{r-\frac{1}{\lambda x}}\text{dx},\\ &=&\frac{e^{r}}{2\lambda}\left( \frac{1}{r}\right)^{r}\left( {\int}_{\frac{r_{2}}{\lambda}}^{r}t^{r-2}e^{-t}\text{dt}-{\int}_{r}^{\frac{r_{1}}{\lambda}}t^{r-2}e^{-t}\text{dt}\right)+\frac{1}{\lambda r}-\frac{1}{r_{2}}, \end{array} $$

we find that the above formulation has different computing forms according to the values of r, if r = 1, then the expected value of η is computed by the formulation (14); if r = n, (n > 1), then the expected value of η is computed by the formulation (16).

Therefore, if \(m\in \left [\frac {1}{r_{2}},\frac {1}{\lambda r}\right )\), then the absolute semi-deviation value E[(ηm)+] is as follows:

$$ \begin{array}{@{}rcl@{}} \mathrm{E}[(\eta-m)^{+}]&=&{\int}_{(m,+\infty)}(x-m)\mathrm{d}\text{Cr}\{\eta \leq x\}\\ &=&{\int}_{(m,\frac{1}{\lambda r})}(x-m)\mathrm{d}\frac{1}{2}\left( \frac{1}{\lambda rx}\right)^{r}e^{r-\frac{1}{\lambda x}}\\ &&+{\int}_{(\frac{1}{\lambda r},\frac{1}{r_{1}})}(x-m)\mathrm{d}\left[1-\frac{1}{2}\left( \frac{1}{\lambda rx}\right)^{r}e^{r-\frac{1}{\lambda x}}\right]. \end{array} $$
(19)

By equation (19), we have the following result

$$ \begin{array}{@{}rcl@{}} \mathrm{E}[(\eta-m)^{+}]&=&\left( \frac{1}{r_{1}}-m\right)\left[1-\frac{1}{2}\left( \frac{r_{1}}{\lambda r}\right)^{r}e^{r-\frac{r_{1}}{\lambda}}\right]-\left( \frac{1}{r_{1}}-\frac{1}{\lambda r}\right)\\ &&+\frac{1}{2\lambda}\left( \frac{1}{r}\right)^{r}e^{r}\left( {\int}_{(\frac{1}{\lambda m},r)}t^{r-2}e^{-t}\text{dt}-{\int}_{(r,\frac{r_{1}}{\lambda})}t^{r-2}e^{-t}\text{dt}\right). \end{array} $$

Next, according to the different values of r, we present two cases to calculate the value of E[(ηm)+] when \(m\in \left [\frac {1}{r_{2}},\frac {1}{\lambda r}\right ]\).

  1. (i)

    If r = 1, then the absolute semi-deviation value E[(ηm)+] is computed by the formulation (13).

  2. (ii)

    If r = n, (n > 1), then the absolute semi-deviation value E[(ηm)+] is computed by the formulation (15).

Similarly, if \(m\in [\frac {1}{\lambda r},\frac {1}{r_{1}}]\), the absolute semi-deviation value E[(ηm)+] is as follows.

  1. (i)

    If r = 1, then the absolute semi-deviation value E[(ηm)+] is computed by the formulation (17).

  2. (ii)

    If r = n, (n > 1), then the absolute semi-deviation value E[(ηm)+] is computed by the formulation (18).

The rest of theorem is similar to prove. The proof of theorem is complete. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Y. A risk-averse multi-item inventory problem with uncertain demand. J. of Data, Inf. and Manag. 1, 77–90 (2019). https://doi.org/10.1007/s42488-019-00005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42488-019-00005-y

Keywords

Navigation