Adafruit feather m0 bluefruit le, https://www.adafruit.com/product/2995, Accessed 14 Mar 2021. (2021)
Baccelli, F., Błaszczyszyn, B., et al.: Stochastic geometry and wireless networks: volume ii applications. Found. Trends® Netw. 4(1–2), 1–312 (2010)
Bales, D., Tarazaga, P.A., Kasarda, M., Batra, D., Woolard, A.G., Poston, J.D., Malladi, V.S.: Gender classification of walkers via underfloor accelerometer measurements. IEEE Internet Things J. 3(6), 1259–1266 (2016)
Article
Google Scholar
Banerjee, T., Sheth, A.: Iot quality control for data and application needs. IEEE Intell. Syst. 32(2), 68–73 (2017)
Article
Google Scholar
Boano, C.A., Voigt, T., Dunkels, A., Osterlind, F., Tsiftes, N., Mottola, L., Suarez, P.: Exploiting the lqi variance for rapid channel quality assessment. In: Proceedings of the 2009 International Conference on Information Processing in Sensor Networks. IEEE Computer Society, pp. 369–370 (2009)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)
Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
MATH
Book
Google Scholar
Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the big data era. Data Sci. J. 14, 1–10 (2015)
Chen, M.-J., Bovik, A.C.: Fast structural similarity index algorithm. J. Real-Time Image Process. 6(4), 281–287 (2011)
Article
Google Scholar
Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.: Xgboost: extreme gradient boosting. R package version 4–2, 1–4 (2015)
Google Scholar
Chen, X., Xu, S., Liu, X., Xu, X., Noh, H.Y., Zhang, L., Zhang, P.: Adaptive hybrid model-enabled sensing system (hmss) for mobile fine-grained air pollution estimation. IEEE Trans. Mob. Comput. (2020)
Clemente, J., Li, F., Valero, M., Song, W.: Smart seismic sensing for indoor fall detection, location, and notification. IEEE J. Biomed. Health. Inf. 24(2), 524–532 (2019)
Article
Google Scholar
Clifton, W., Frank, A., Freeman, S.-M.: Osteopetrosis (marble bones). Am. J. Dis. Child. 56, 1020 (1938)
Article
Google Scholar
Devarakonda, S., Sevusu, P., Liu, H., Liu, R., Iftode, L., Nath, B.: Real-time air quality monitoring through mobile sensing in metropolitan areas. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, pp. 1–8 (2013)
Fagert, J., Mirshekari, M., Pan, S., Lowes, L., Iammarino, M., Zhang, P., Noh, H.Y.: Structure-and sampling-adaptive gait balance symmetry estimation using footstep-induced structural floor vibrations. J. Eng. Mech. 147(2), 04020151 (2021)
Article
Google Scholar
Fortin-Simard, D., Bilodeau, J.-S., Gaboury, S., Bouchard, B., Bouzouane, A.: Human activity recognition in smart homes: Combining passive rfid and load signatures of electrical devices. In: 2014 IEEE symposium on intelligent agents (IA). IEEE pp. 22–29 (2014)
Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J. Jpn. Soc. For. Artif. Intell. 14, 771–780 (1999)
Google Scholar
Gao, Y., Dong, W., Guo, K., Liu, X., Chen, Y., Liu, X., Bu, J., Chen, C.: Mosaic: A low-cost mobile sensing system for urban air quality monitoring. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. IEEE pp. 1–9 (2016)
Genovese, V., Mannini, A., Sabatini, A.M.: A smartwatch step counter for slow and intermittent ambulation. IEEE Access 5, 13 028–-13 037 (2017)
Article
Google Scholar
Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)
MATH
Article
Google Scholar
Goldberger, J., Hinton, G.E., Roweis, S.T., Salakhutdinov, R.R.: Neighbourhood components analysis. Adv. Neural Inf. Process. Syst. 17, 513–520 (2005)
Google Scholar
Grimmer, M., Schmidt, K., Duarte, J.E., Neuner, L., Koginov, G., Riener, R.: Stance and swing detection based on the angular velocity of lower limb segments during walking. Front. Neurorobot. 13, 57 (2019)
Article
Google Scholar
Hanlon, M., Anderson, R.: Real-time gait event detection using wearable sensors. Gait Posture 30(4), 523–527 (2009)
Article
Google Scholar
Hu, Z., Yu, T., Zhang, Y., Pan, S.: Fine-grained activities recognition with coarse-grained labeled multi-modal data. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, pp. 644–649 (2020)
Islam, A.N., Lohan, E. S., Renfors, M.: Moment based cnr estimators for BOC/BPSK modulated signal for Galileo/GPS, In: 5th Workshop on Positioning, Navigation and Communication. IEEE, pp. 129–136 (2008)
Jiang, Y., Li, K., Tian, L., Piedrahita, R., Yun, X., Mansata, O., Lv, Q., Dick, R. P., Hannigan, M., Shang, L.: Maqs: a personalized mobile sensing system for indoor air quality monitoring. In: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 271–280 (2011)
Karkouch, A., Mousannif, H., Al Moatassime, H., Noel, T.: Data quality in internet of things: a state-of-the-art survey. J. Netw. Comput. Appl. 73, 57–81 (2016)
Article
Google Scholar
Kleinbaum, D.G., Dietz, K., Gail, M., Klein, M., Klein, M.: Logistic Regression. Springer, New York, USA (2002)
Google Scholar
Li, C., Bovik, A. C.: Three-component weighted structural similarity index, In: Image quality and system performance VI, vol. 7242. International Society for Optics and Photonics, p. 72420Q (2009)
Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)
Google Scholar
LMV3xx Low-Voltage Rail-to-Rail Output Operational Amplifier, Texas Instruments Incorporated, 5 (2020)
Mirshekari, M., Pan, S., Fagert, J., Schooler, E.M., Zhang, P., Noh, H.Y.: Occupant localization using footstep-induced structural vibration. Mech. Syst. Signal Process. 112, 77–97 (2018)
Article
Google Scholar
Mirshekari, M., Fagert, J., Pan, S., Zhang, P., Noh, H.Y.: Step-level occupant detection across different structures through footstep-induced floor vibration using model transfer. J. Eng. Mech. 146(3), 04019137 (2020)
Article
Google Scholar
Mokaya, F., Nguyen, B., Kuo, C., Jacobson, Q., Rowe, A., Zhang, P.: Mars: a muscle activity recognition system enabling self-configuring musculoskeletal sensor networks. In: 2013 ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). IEEE, pp. 191–202 (2013)
Moon, K.S., Lee, S.Q., Ozturk, Y., Gaidhani, A., Cox, J.A.: Identification of gait motion patterns using wearable inertial sensor network. Sensors 19(22), 5024 (2019)
Article
Google Scholar
Öberg, T., Karsznia, A., Öberg, K.: Basic gait parameters: reference data for normal subjects, 10–79 years of age. J. Rehabil. Res. Dev. 30, 210–210 (1993)
Google Scholar
Oppenheim, A.V., Schafer, R.W.: Digital Signal Processing(book). Research supported by the Massachusetts Institute of Technology, Bell Telephone Laboratories, and Guggenheim Foundation, Englewood Cliffs, 9. 598 (1975). (Prentice-Hall, Inc.)
Google Scholar
Pan, S., Nguyen, P.: Opportunities in the cross-scale collaborative human sensing of ’developing’ device-free and wearable systems. In: Proceedings of the 2nd ACM Workshop on Device-Free Human Sensing, pp. 16–21 (2020)
Pan, S., Bonde, A., Jing, J., Zhang, L., Zhang, P., Noh, H.Y.: Boes: building occupancy estimation system using sparse ambient vibration monitoring, In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, vol. 9061. International Society for Optics and Photonics, pp. 90611O-1–90611O-16 (2014)
Pan, S., Wang, N., Qian, Y., Velibeyoglu, I., Noh, H. Y., Zhang, P.: Indoor person identification through footstep induced structural vibration. In: Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, pp. 81–86 (2015)
Pan, S., Yu, T., Mirshekari, M., Fagert, J., Bonde, A., Mengshoel, O.J., Noh, H.Y., Zhang, P.: Footprintid: indoor pedestrian identification through ambient structural vibration sensing. Proc. ACM Interact. Mob. Wear. Ubiquit. Technol. 1(3), 1–31 (2017)
Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM 45(4), 211–218 (2002)
Article
Google Scholar
Prakash, J., Yang, Z., Wei, Y.-L., Choudhury, R. R.: Stear: Robust step counting from earables. In: Proceedings of the 1st International Workshop on Earable Computing, pp. 36–41 (2019)
Rish, I., et al.: An empirical study of the naive bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, 3(22), pp. 41–46 (2001)
Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39. Cambridge University Press, Cambridge (2008)
MATH
Google Scholar
Sellitto, C., Burgess, S., Hawking, P.: Information quality attributes associated with rfid-derived benefits in the retail supply chain. Int. J. Retail Distrib. Manag. 35(1), 69–87 (2007)
Article
Google Scholar
Shapiro, S., Kneib, G.: Seismic attenuation by scattering: theory and numerical results. Geophys. J. Int. 114(2), 373–391 (1993)
Article
Google Scholar
Shi, L., Mirshekari, M., Fagert, J., Chi, Y., Noh, H. Y., Zhang, P., Pan, S.: Device-free multiple people localization through floor vibration. In: Proceedings of the 1st ACM International Workshop on Device-Free Human Sensing, pp. 57–61 (2019)
SM-24 Geophone Element, Input/Output, Inc., 4 2006, rev. 3
Small, Low Power, 3-Axis \(\pm 3\) g Accelerometer, Analog Devices, Inc., (2010)
Sparkfun samd21 mini breakout, https://www.sparkfun.com/products/13664. Accessed 14 Mar 2021. (2021)
Srinivasan, K., Levis, P.: Rssi is under appreciated, In: Proceedings of the Third Workshop on Embedded Networked Sensors (EmNets), vol. 2006. Cambridge, USA, MA. pp. 1–5 (2006)
Stein, S., Wysession, M.: An Introduction to Seismology, Earthquakes, and Earth Structure. Wiley, Hoboken, New Jersey, USA (2009)
Google Scholar
Van den Branden Lambrecht, C.: Special issue on image and video quality metrics. Signal Process. 70(3), 153–154 (1998)
van der Togt, R., Bakker, P.J., Jaspers, M.W.: A framework for performance and data quality assessment of radio frequency identification (rfid) systems in health care settings. J. Biomed. Inf. 44(2), 372–383 (2011)
Article
Google Scholar
Viktorov, I.A.: Rayleigh and Lamb Waves: Physical Theory and Applications. Plenum Press, Berlin (1970)
Google Scholar
Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)
Article
Google Scholar
Wang, Z., Lu, L., Bovik, A.C.: Video quality assessment based on structural distortion measurement. Signal Process. Image Commun. 19(2), 121–132 (2004)
Article
Google Scholar
Xu, S., Chen, X., Pi, X., Joe-Wong, C., Zhang, P., Noh, H. Y.: Vehicle dispatching for sensing coverage optimization in mobile crowdsensing systems. In: 2019 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). IEEE, pp. 311–312 (2019a)
Xu, S., Chen, X., Pi, X., Joe-Wong, C., Zhang, P., Noh, H.Y.: ilocus: incentivizing vehicle mobility to optimize sensing distribution in crowd sensing. IEEE Trans. Mob. Comput. 19(8), 1831–1847 (2019b)
Google Scholar
Yi, T.-H., Li, H.-N., Zhao, X.-Y.: Noise smoothing for structural vibration test signals using an improved wavelet thresholding technique. Sensors 12(8), 11 205-11 220 (2012)
Ying, H., Silex, C., Schnitzer, A., Leonhardt, S., Schiek, M.: Automatic step detection in the accelerometer signal. In: 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007). Springer, pp. 80–85 (2007)
Yu, T., Zhang, Y., Hu, Z., Xu, S., Pan, S.: Vibration-based indoor human sensing quality reinforcement via Thompson sampling. In: Proceedings of the First International Workshop on Cyber-Physical-Human System Design and Implementation, pp. 33–38 (2021)
Zhang, Y., Zhang, L., Noh, H. Y., Zhang, P., Pan, S.: A signal quality assessment metrics for vibration-based human sensing data acquisition. In: Proceedings of the 2nd Workshop on Data Acquisition To Analysis, pp. 29–33 (2019)