Skip to main content
Log in

The therapeutic effect of BODIPY-based photosensitizers against acetylcholinesterase for the treatment of Alzheimer’s disease

  • Research
  • Published:
Journal of Proteins and Proteomics Aims and scope Submit manuscript

Abstract

The alzheimer disease (AD) origination and promulgation are closely associated with the acetylcholinesterase (AChE) enzyme. The management of AD involves the immediate usage of AChE inhibition drugs. To resolve this problem, two BODIPY-created cationic photosensitizers (PSs) have been developed, 1BDPC-Py and 1BDPC-TPP, for inhibition of AChE. Statistical analysis of the results revealed that both 1BDPC-Py (10–30 µM) and 1BDPC-TPP (15–40 µM) inhibited the AChE in a dose-dependent procedure. A kinetic study using the Lineweaver Burk plot showed that 1BDPC-Py a mixed type of inhibition, i.e., Vmax decreased and Km increased with increasing concentration of 1BDPC-Py, while 1BDPC-TPP caused an un-competitive type of inhibition i.e., both Km and Vmax decreased with an increase of 1BDPC-TPP concentrations. For 1BDPC-TPP the KIapp was found to increase from 15.61 to 37.83 (13.96–142.34%) while Vmaxiapp decreased from 307.97 to 440.52 (16.96–369.43.03%) with an increase of substrate from (0.05–1 mM), while for 1BDPC-TPP the Kmaxipp decreased from 106.73 to 19.25 (25.6–82%) and Vmaxiapp decreased from 246.54 to 131.55 (24.6–440.09%). The Ki, (inhibitory constant); KI, (constant of the dissociation constant), Km, (constant of Michaelis–Menten), and IC50 (50% inhibition) were found to be 15 µM, 24.186 µM, 0. 0.0537 mM, and 21.26 ± 0.15 µM for 1BDPC-Py and 22 µM, 41.91 µM, 0.312 mM, and 28.28 ± 0.12 µM for 1BDPC-TPP. The γKm (dissociation constant of the enzyme–substrate-inhibitor complex into substrate and enzyme-inhibitor complex) was found to be 0.083 µM. Thus, to the best of our information, both of these BODIPY-based PSs are the first excitable compounds in the treatment of alzheimer's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  • Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed M, Batista J, Rocha T, Mazzanti CM, Hassan W, Morsch VM (2008) Comparative study of the inhibitory effect of antidepressants on cholinesterase activity in Bungarus sindanus (krait) venom, human serum and rat striatum. J Enzyme Inhib Med Chem 23:912–917

    Article  CAS  PubMed  Google Scholar 

  • Ahmed M, Khan SZ, Sher N, Rehman ZU, Mushtaq N, Khan RA (2021) Kinetic and toxicological effects of synthesized palladium(II) complex on snake venom (Bungarus sindanus) acetylcholinesterase. J Venom Anim Toxins Incl Trop Dis 27:e20200047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Swomley AM, Sultana R (2013) Amyloid -peptide (1–42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 19:823–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WW, Zhang X, Huang WJ (2016) Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 13:3391–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Kwong JC, Copes R, Tu K, Villeneuve PJ, van Donkelaar A, Hystad P, Martin RV, Murray BJ, Jessiman B, Wilton AS, Kopp A, Burnett RT (2017) Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. Lancet 389:718–726

    Article  PubMed  Google Scholar 

  • Chen K, Dong Y, Zhao X, Imran M, Tang G, Zhao J, Liu Q (2019) Bodipy derivatives as triplet photosensitizers and the related intersystem crossing mechanisms. Front Chem 7:821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, Maisch T (2018) Antimicrobial photodynamic therapy—what we know and what we don’t. Crit Rev Microbiol 44:571–589

    Article  CAS  PubMed  Google Scholar 

  • Cornish-Bowden A, Cárdenas ML (1991) Hexokinase and “glucokinase” in liver metabolism. Trends Biochem Sci 16:281–282

    Article  CAS  PubMed  Google Scholar 

  • Dixon M, Webb EC (1964) Enzymes. Longmans, London

    Google Scholar 

  • Dowd JE, Riggs DS (1965) A comparison of estimates of michaelis-menten kinetic constants from various linear transformations. J Biol Chem 240:863–869

    Article  CAS  PubMed  Google Scholar 

  • Dugué GP, Akemann W, Knöpfel T (2012) A comprehensive concept of optogenetics. Prog Brain Res 196:1–28

    Article  PubMed  Google Scholar 

  • Gawale Y, Adarsh N, Kalva SK, Joseph J, Pramanik M, Ramaiah D, Sekar N (2017) Carbazole-linked near-infrared aza-BODIPY dyes as triplet sensitizers and photoacoustic contrast agents for deep-tissue imaging. Chemistry 23:6570–6578

    Article  CAS  PubMed  Google Scholar 

  • Gupta I, Kesavan PE (2019) Carbazole substituted BODIPYs. Front Chem 7:841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81:425–433

    Article  CAS  PubMed  Google Scholar 

  • Hofstee BH (1952) On the evaluation of the constants Vm and KM in enzyme reactions. Science 116:329–331

    Article  CAS  PubMed  Google Scholar 

  • Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342:619–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K (2013) BODIPY dyes in photodynamic therapy. Chem Soc Rev 42:77–88

    Article  CAS  PubMed  Google Scholar 

  • Kessel D (2004) Photodynamic therapy: from the beginning. Photodiagnosis Photodyn Ther 1:3–7

    Article  CAS  PubMed  Google Scholar 

  • Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR (2011) Photodynamic therapy for infections: clinical applications. Lasers Surg Med 43:755–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowada T, Maeda H, Kikuchi K (2015) BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem Soc Rev 44:4953–4972

    Article  CAS  PubMed  Google Scholar 

  • Kue CS, Ng SY, Voon SH, Kamkaew A, Chung LY, Kiew LV, Lee HB (2018) Recent strategies to improve boron dipyrromethene (BODIPY) for photodynamic cancer therapy: an updated review. Photochem Photobiol Sci 17:1691–1708

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Singh Ekavali A (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203

    Article  CAS  PubMed  Google Scholar 

  • Kursunlu AN (2014) Porphyrin-Bodipy combination: synthesis, characterization and antenna effect. RSC Adv 4:47690–47696

    Article  CAS  Google Scholar 

  • Kursunlu AN (2015) Synthesis and photophysical properties of modifiable single, dual, and triple-boron dipyrromethene (Bodipy) complexes. Tetrahedron Lett 56:1873–1877

    Article  CAS  Google Scholar 

  • Kursunlu AN, Koc ZE, Obalı AY, Güler E (2014) A symmetric and selective fluorescent Cu (II) sensor based on bodipy and s-triazine. J Lumin 149:215–220

    Article  CAS  Google Scholar 

  • Kursunlu AN, Şahin E, Güler E (2016) Cu (II) chemosensor based on a fluorogenic bodipy-salophen combination: sensitivity and selectivity studies. J Fluoresc 26:1997–2004

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J (2018) Photodynamic therapy—mechanisms, photosensitizers and combinations. Biomed Pharmacother 106:1098–1107

    Article  PubMed  Google Scholar 

  • Li M (2018) De novo design of phototheranostic sensitizers based on structure-inherent targeting for enhanced cancer ablation. J Am Chem Soc 140:15820–15826

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang J, Liu L (2020) Alzheimer’s therapeutic strategy: photoactive platforms for suppressing the aggregation of amyloid β protein. Front Chem 8:509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Liu M (2022) Golgi apparatus-targeted aggregation-induced emission luminogens for effective cancer photodynamic therapy. Nat Commun 13:2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Mack J, Yang Y, Shen Z (2014) Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem Soc Rev 43:4778–4823

    Article  CAS  PubMed  Google Scholar 

  • Luby BM, Walsh CD, Zheng G (2019) Advanced photosensitizer activation strategies for smarter photodynamic therapy beacons. Angew Chem Int Ed Engl 58:2558–2569

    Article  CAS  PubMed  Google Scholar 

  • Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042

    Article  CAS  PubMed  Google Scholar 

  • Mallidi S, Anbil S, Bulin AL, Obaid G, Ichikawa M, Hasan T (2016) Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics 6:2458–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masood MA, Wu Y, Chen Y, Yuan H, Sher N, Faiz F, Yao S, Qi F, Khan MI, Ahmed M, Mushtaq N, He W, Guo Z (2022) Optimizing the photodynamic therapeutic effect of BODIPY-based photosensitizers against cancer and bacterial cells. Dyes Pigm 202:110255

    Article  CAS  Google Scholar 

  • Niu SL, Massif C, Ulrich G, Renard PY, Romieu A, Ziessel R (2012) Water-soluble red-emitting distyryl-borondipyrromethene (BODIPY) dyes for biolabeling. Chemistry 18:7229–7242

    Article  CAS  PubMed  Google Scholar 

  • Prieto-Montero R, Prieto-Castañeda A, Sola-Llano R, Agarrabeitia AR, García-Fresnadillo D, López-Arbeloa I, Villanueva A, Ortiz MJ, de la Moya S, Martínez-Martínez V (2020) Exploring BODIPY derivatives as singlet oxygen photosensitizers for PDT. Photochem Photobiol 96:458–477

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Liu X, Jia PP, Xu L, Yang HB (2020) BODIPY-based macrocycles. Chem Soc Rev. https://doi.org/10.1039/C9CS00797K

    Article  PubMed  Google Scholar 

  • Racchi M, Mazzucchelli M, Porrello E, Lanni C, Govoni S (2004) Acetylcholinesterase inhibitors: novel activities of old molecules. Pharmacol Res 50:441–451

    Article  CAS  PubMed  Google Scholar 

  • Rocha JB, Emanuelli T, Pereira ME (1993) Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp 53:431–437

    CAS  Google Scholar 

  • Rossi MA, Go V, Murphy T, Fu Q, Morizio J, Yin HH (2015) A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Front Integr Neurosci 9:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    Article  CAS  PubMed  Google Scholar 

  • Schneider LS (2001) Treatment of Alzheimer’s disease with cholinesterase inhibitors. Clin Geriatr Med 17:337–358

    Article  CAS  PubMed  Google Scholar 

  • Sher N, Ahmed M, Mushtaq N, Khan RA (2022) Enhancing antioxidant, antidiabetic, and antialzheimer performance of Hippeastrum hybridum (L.) using silver nanoparticles. Appl Organomet Chem 36:e6724

    Article  CAS  Google Scholar 

  • Solanki I, Parihar P, Mansuri ML, Parihar MS (2015) Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 6:64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steel RGD, Torrie JH (1984) Principles and procedures of statistics: a biometrical approach. McGraw-Hill, New York

    Google Scholar 

  • Takalo M, Salminen A, Soininen H, Hiltunen M, Haapasalo A (2013) Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am J Neurodegener Dis 2:1–14

    PubMed  PubMed Central  Google Scholar 

  • Tan CC, Yu JT, Tan MS, Jiang T, Zhu XC, Tan L (2014) Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 35:941–957

    Article  PubMed  Google Scholar 

  • Thomas AP, Palanikumar L, Jeena MT, Kim K, Ryu JH (2017) Cancer-mitochondria-targeted photodynamic therapy with supramolecular assembly of HA and a water soluble NIR cyanine dye. Chem Sci 8:8351–8356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J (2021) BCPT policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol 128:4–8

    Article  CAS  PubMed  Google Scholar 

  • Xue X (2019) Photoactivated lysosomal escape of a monofunctional PtII complex Pt-BDPA for nucleus access. Angew Chem Int Ed 58:12661–12666

    Article  CAS  Google Scholar 

  • Zhang J, Liu J, Zhu Y, Xu Z, Xu J, Wang T, Yu H, Zhang W (2016) Photodynamic micelles for amyloid β degradation and aggregation inhibition. Chem Commun 52:12044–12047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (22122701, 21731004, 21907050, 91953201, 21907044), the Natural Science Foundation of Jiangsu Province (BK20190282, BK20202004), and the Excellent Research Program of Nanjing University (ZYJH004).

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed.

Corresponding author

Correspondence to Mushtaq Ahmed.

Ethics declarations

Conflict of interest

The authors announce no opposing interests regarding this research article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M., Mushtaq, N., Sher, N. et al. The therapeutic effect of BODIPY-based photosensitizers against acetylcholinesterase for the treatment of Alzheimer’s disease. J Proteins Proteom (2024). https://doi.org/10.1007/s42485-024-00137-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42485-024-00137-9

Keywords

Navigation