Skip to main content

Advertisement

Log in

Synthesis of novel 4-methylthiocoumarin and comparison with conventional coumarin derivative as a multi-target-directed ligand in Alzheimer’s disease

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a multifactorial disorder characterized by cognitive deficit and memory loss. The pathological feature of the disease involves β-amyloid senile plaques, reduced levels of acetylcholine neurotransmitter, oxidative stress and neurofibrillary tangles formation within the brain of AD patients. The present study aims to screen the inhibitory activity of newly synthesized and existing novel 4-methylthiocoumarin derivative against acetylcholinesterase, butyrylcholinesterase, BACE1, β-amyloid aggregation and oxidative stress involved in the AD pathogenesis. The in vitro assays used in this study were Ellman’s assay, FRET assays, Thioflavin T, transmission electron microscopy, circular dichroism, FRAP, and TEAC. Molecular docking and dynamics studies were performed to correlate the results. C3 and C7 (thiocoumarin derivatives) were found to be the most potent inhibitors of acetylcholinesterase (IC50-5.63 µM) and butyrylcholinesterase (IC50-3.40 µM) using Ellman’s assays. Enzyme kinetic studies showed that C3 and C7 compounds followed by the mixed mode of inhibition using LB plot. C3 also moderately inhibited the BACE1 using FRET assay. C3 inhibited the fibrillization of β-amyloid peptides in a concentration-dependent manner as observed by Thioflavin T, TEM studies and Circular dichroism data. Molecular modeling studies were performed to understand the probable mode of binding of C3 and C7 in the binding pocket of acetylcholinesterase, butyrylcholinesterase, BACE1 and amyloid β peptides. This indicates the important role of hydrophobic interactions between C3 and acetylcholinesterase. C3 also exhibited significant antioxidant potential by FRAP and TEAC assays. Hence, C3 might serve as a promising lead for developing novel multi target-directed ligand for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

CNS:

Central nervous system

Aβ:

Amyloid β

MTDLs:

Multi-target-directed ligands

BACE1:

β-Secretase cleavage enzyme

MAO B:

Monoamine oxidase B

AChE:

Acetylcholinesterase

BuChE:

Butyrylcholinesterase

Ach:

Acetylcholine

APP:

Amyloid precursor protein

ROS:

Reactive oxygen species

FAD:

Flavin adenine dinucleotide

H2O2 :

Hydrogen peroxide

AChEI:

AChE inhibitor

TEM:

Transmission electron microscope

CD:

Circular dichroism

donorHB:

Hydrogen bond donor

accptHB:

Hydrogen bond acceptor

BBB:

Blood–brain barrier

PSA:

Polar surface area

ATChI:

Acetythiolcholine iodide

BuChI:

Butyrylcholine iodide

DTNB:

5:5-Dithiobis-2-nitrobenzoic acid

ADME:

Absorption, distribution, metabolism and excretion

References

  • Alzheimer’s Association (2019) Alzheimer’s disease facts and figures. Alzheimers Dement 15(3):321–387

    Google Scholar 

  • Anand P, Singh B, Singh N (2012) A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 20(3):1175–1180

    CAS  PubMed  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    CAS  PubMed  Google Scholar 

  • Bertini S et al (2017) Sulfonamido-derivatives of unsubstituted carbazoles as BACE1 inhibitors. Bioorg Med Chem Lett 27(21):4812–4816

    CAS  PubMed  Google Scholar 

  • Borg S et al (1999) Design, synthesis, and evaluation of Phe-Gly mimetics: heterocyclic building blocks for pseudopeptides. J Med Chem 42(21):4331–4342

    CAS  PubMed  Google Scholar 

  • Borroni E et al (2017) Sembragiline: a novel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer’s disease. J Pharmacol Exp Ther 362(3):413–423

    CAS  PubMed  Google Scholar 

  • Bowers KJ et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the ACM/IEEE conference on supercomputing (SC06), Tampa, Florida, pp 17.

  • Butterfield DA, Sultana R (2011) Methionine-35 of Aβ (1–42): importance for oxidative stress in Alzheimer disease. J Amino Acids 2011:1–10

    Google Scholar 

  • Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30(2):271–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YR et al (2006) The effect of Aβ conformation on the metal affinity and aggregation mechanism studied by circular dichroism spectroscopy. J Biochem 139(4):733–740

    CAS  PubMed  Google Scholar 

  • Chen GF et al (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38(9):1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung J et al (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55:10282–10286

    CAS  PubMed  Google Scholar 

  • Crescenzi O et al (2002) Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment: similarity with a virus fusion domain. Eur J Biochem 269(22):5642–5648

    CAS  PubMed  Google Scholar 

  • Czarnecka K et al (2017) Tetrahydroacridine derivatives with fluorobenzoic acid moiety as multifunctional agents for Alzheimer’s disease treatment. Bioorg Chem 72:315–322

    CAS  PubMed  Google Scholar 

  • Czarnecka K et al (2018) New cyclopentaquinoline hybrids with multifunctional capacities for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem 33(1):158–170

    CAS  Google Scholar 

  • Das S et al (2017) Prediction of anti-Alzheimer’s activity of flavonoids targeting acetylcholinesterase in silico. Phytochem Anal 28(4):324–331

    CAS  PubMed  Google Scholar 

  • De LP, Pitzurra M, Negri M (1962) Antibacterial properties of thiocoumarin and its 7-substituted derivatives. Boll Chim Farm 101:376–379

    Google Scholar 

  • Detsi A, Kontogiorgis C, Hadjipavlou-Litina D (2017) Coumarin derivatives: an updated patent review (2015–2016). Expert Opin Ther Pat 27(11):1201–1226

    CAS  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    CAS  PubMed  Google Scholar 

  • Friesner RA et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 49(21):6177–6196

    CAS  PubMed  Google Scholar 

  • Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2009) Fold amyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26(3):326–332

    PubMed  Google Scholar 

  • Goel A et al (2009) Apoptogenic effect of 7, 8-diacetoxy-4-methylcoumarin and 7, 8-diacetoxy-4-methylthiocoumarin in human lung adenocarcinoma cell line: role of NF-κB, Akt, ROS and MAP kinase pathway. Chem Biol Interact 179(2–3):363–374

    CAS  PubMed  Google Scholar 

  • Green K, Fosso M, Garneau-Tsodikova S (2018) multifunctional donepezil analogues as cholinesterase and BACE1 inhibitors. Molecules 23(12):3252

    PubMed Central  Google Scholar 

  • Güvenalp Z et al (2017) Cholinesterase inhibition and molecular docking studies of sesquiterpene coumarin ethers from Heptapteracilicica. Rec Nat Prod 11(5):462–467

    Google Scholar 

  • Hamulakova S et al (2016) Targeting copper (II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer’s disease using multifunctional tacrine-coumarin hybrid molecules. J Inorg Biochem 161:52–62

    CAS  PubMed  Google Scholar 

  • Hamulakova S et al (2017) Synthesis, in vitro acetylcholinesterase inhibitory activity and molecular docking of new acridine-coumarin hybrids. Int J Biol Macromol 104:333–338

    CAS  PubMed  Google Scholar 

  • Hamulakova S et al (2018) Tacrine-coumarin and tacrine-7-chloroquinoline hybrids with thiourea linkers: cholinesterase inhibition properties, kinetic study, molecular docking and permeability assay for blood-brain barrier. Curr Alzheimer Res 15(12):1096–1105

    CAS  PubMed  Google Scholar 

  • Hasselgren C et al (2018) Socioeconomic status, gender and dementia: the influence of work environment exposures and their interactions with APOE ɛ4. SSM Popul Health 5:171–179

    PubMed  PubMed Central  Google Scholar 

  • He Q et al (2018) Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer’s disease: design, synthesis and biological evaluation. Bioorg Chem 81:512–528

    CAS  PubMed  Google Scholar 

  • Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54(4):287–293

    Google Scholar 

  • Jalili-Baleh L et al (2018) Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. Eur J Med Chem 152:600–614

    CAS  PubMed  Google Scholar 

  • Jannat S et al (2019) Inhibition of β-site amyloid precursor protein cleaving enzyme 1 and cholinesterases by pterosins via a specific structure−activity relationship with a strong BBB permeability. Exp Mol Med 51(2):12

    PubMed Central  Google Scholar 

  • Jorgensen WL et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    CAS  Google Scholar 

  • Joubert J et al (2017) Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur J Med Chem 125:853–864

    CAS  PubMed  Google Scholar 

  • Kaminski GA et al (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487

    CAS  Google Scholar 

  • Kocis P et al (2017) Hey, Elucidating the Aβ42 anti-aggregation mechanism of action of tramiprosate in Alzheimer’s disease: integrating molecular analytical methods, pharmacokinetic and clinical data. CNS Drugs 31(6):495–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S et al (2005) Novel thiocoumarins as inhibitors of TNF-α induced ICAM-1 expression on human umbilical vein endothelial cells (HUVECs) and microsomal lipid peroxidation. Bioorg Med Chem 13(5):1605–1613

    CAS  PubMed  Google Scholar 

  • Kumar S et al (2010) In vitro protective effects of Withaniasomnifera (L.) dunal root extract against hydrogen peroxide and β-amyloid (1–42)-induced cytotoxicity in differentiated PC12 cells. Phytother Res 24(10):1567–1574

    CAS  PubMed  Google Scholar 

  • Kumar S, Seal CJ, Okello EJ (2011) Kinetics of acetylcholinesterase inhibition by an aqueous extract of Withaniasomnifera roots. Int J Pharm Sci 2(5):1188

    Google Scholar 

  • Kumar CS et al (2013) Structural correlation of some heterocyclic chalcone analogues and evaluation of their antioxidant potential. Molecules 18(10):11996–12011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M et al (2015) Structure based in silico analysis of quinolone resistance in clinical isolates of Salmonella Typhi from India. PLoS ONE 10(5):e0126560

    PubMed  PubMed Central  Google Scholar 

  • Kumar A et al (2016a) Current and novel therapeutic molecules and targets in Alzheimer’s disease. J Formos Med Assoc 115(1):3–10

    CAS  PubMed  Google Scholar 

  • Kumar J et al (2016b) Synthesis and screening of triazolopyrimidine scaffold as multi-functional agents for Alzheimer’s disease therapies. Eur J Med Chem 119:260–277

    CAS  PubMed  Google Scholar 

  • Kumar S, Chowdhury S, Kumar S (2017) In silico repurposing of antipsychotic drugs for Alzheimer’s disease. BMC Neurosci 18(1):76–92

    PubMed  PubMed Central  Google Scholar 

  • Kumar D et al (2018) Secretase inhibitors for the treatment of Alzheimer’s disease: long road ahead. Eur J Med Chem 148:436–452

    CAS  PubMed  Google Scholar 

  • Larik FA et al (2020) Synthesis, inhibition studies against AChE and BChE, drug-like profiling, kinetic analysis and molecular docking studies of N-(4-phenyl-3-aroyl-2 (3H)-ylidene) substituted acetamides. J Mol Struct 1203:127459

    CAS  Google Scholar 

  • Li H, Rahimi F, Bitan G (2016) Modulation of amyloid β-protein (Aβ) assembly by homologous C-terminal fragments as a strategy for inhibiting aβ toxicity. ACS Chem Neurosci 7(7):845–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lionetto MG et al (2013) Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. Biomed Res Int 2013:1–8

    Google Scholar 

  • Liu CZ et al (2018) Rasagiline, an inhibitor of MAO-B, decreases colonic motility through elevating colonic dopamine content. J Neurogastroenterol Motil 30(11):e13390

    Google Scholar 

  • Mareček V et al (2017) ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J Cereal Sci 73:40–45

    Google Scholar 

  • Martyna GJ, Klein ML, Tuckerman M (1992) Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635–2643

    Google Scholar 

  • Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177–4189

    CAS  Google Scholar 

  • Meena P et al (2016) Novel insights into multitargeted potential of N′-(4-benzylpiperidin-1-yl) alkylamine derivatives in the management of Alzheimer’s disease associated pathogenesis. RSC Adv 6(106):104847–104867

    CAS  Google Scholar 

  • Modh RP et al (2013) Design, synthesis, biological evaluation, and molecular modelling of coumarin-piperazine derivatives as acetylcholinesterase inhibitors. Arch Pharm 346(11):793–804

    CAS  Google Scholar 

  • Moghadam EK, Seyed SM, Gholizadeh M (2017) Design and synthesis of new derivatives of 2-Thiocoumarin 15-lipoxygenase inhibitors. In the 19th Iranian chemistry congress, Shiraz University

  • Mokrov GV et al (2019) Synthesis and anticonvulsant activity of 4-amino-3-nitro-1-thiocoumarins and 4-amino-3-nitroquinolin-2-ones. Pharm Chem J 53(3):1–7

    Google Scholar 

  • Nair SSK, Reddy NS, Hareesha KS (2011) Exploiting heterogeneous features to improve in silico prediction of peptide status–amyloidogenic or non-amyloidogenic. BMC Bioinform 12(13):S21

    CAS  Google Scholar 

  • Necula M et al (2007) Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 282(14):10311–10324

    CAS  PubMed  Google Scholar 

  • Nicolet Y et al (2003) Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 278:41141–41147

    CAS  PubMed  Google Scholar 

  • Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016:1–23

    Google Scholar 

  • Okello EJ, Savelev SU, Perry EK (2004) In vitro anti-β-secretase and dual anti-cholinesterase activities of Camellia sinensis L. (tea) relevant to treatment of dementia. Phytother Res 18(8):624–627

    PubMed  Google Scholar 

  • Ono K et al (2004) Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s β-amyloid fibrils in vitro. Biochim Biophys Acta 1690(3):193–202

    CAS  PubMed  Google Scholar 

  • Pandey G et al (2019) Prognostic and therapeutic relevance of cathepsin B in pediatric acute myeloid leukemia. Am J Cancer Res 9(12):2634–2649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pechmann HV, Duisberg C (1883) Ueber die verbindungen der phenolemitacetessigäther. Berichte der deutschenchemischen Gesellschaft 16(2):2119–2128

    Google Scholar 

  • Perez-Iratxeta C, Andrade-Navarro MA (2008) K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Struct Biol 8(1):25

    PubMed  PubMed Central  Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    CAS  PubMed  Google Scholar 

  • Pisoschi AM, Negulescu GP (2011) Methods for total antioxidant activity determination: a review. Biochem Anal Biochem 1(1):106

    Google Scholar 

  • Raj HG et al (1998) Mechanism of biochemical action of substituted 4-methylbenzopyran-2-ones. Part I: dioxygenated 4-methyl coumarins as superb antioxidant and radical scavenging agents. Bioorg Med Chem 6(6):833–839

    CAS  PubMed  Google Scholar 

  • Ranade DS et al (2016) Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity. Eur J Med Chem 121:803–809

    CAS  PubMed  Google Scholar 

  • Rueeger H et al (2012) Discovery of cyclic sulfone hydroxyethylamines as potent and selective β-site APP-cleaving enzyme 1 (BACE1) inhibitors: structure-based design and in vivo reduction of amyloid β-peptides. J Med Chem 55:3364–3386

    CAS  PubMed  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints, molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    CAS  Google Scholar 

  • Sarma AD, Mallick AR, Ghosh AK (2010) Free radicals and their role in different clinical conditions: an overview. Int J Pharm Sci Res 1(3):185–192

    Google Scholar 

  • Sastry GM et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234

    PubMed  Google Scholar 

  • Sharma P et al (2019) Design and development of multitarget-directed N-benzylpiperidine analogs as potential candidates for the treatment of Alzheimer’s disease. Eur J Med Chem 167:510–524

    CAS  PubMed  Google Scholar 

  • Shelley JC et al (2007) Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21(12):681–691

    CAS  PubMed  Google Scholar 

  • Shi DH et al (2020) Liu, synthesis, characterization, crystal structure and evaluation of four carbazole-coumarin hybrids as multifunctional agents for the treatment of Alzheimer’s disease. J Mol Struct 1209:127897

    CAS  Google Scholar 

  • Sinha S, Lopes DH, Bitan G (2012) A key role for lysine residues in amyloid β-protein folding, assembly, and toxicity. ACS Chem Neurosci 3(6):473–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soto C, Castaño EM (1996) The conformation of Alzheimer’s β peptide determines the rate of amyloid formation and its resistance to proteolysis. Biochem J 314(2):701–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Ortega DD et al (2011) Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg Med Chem 19(8):2596–2602

    CAS  PubMed  Google Scholar 

  • Tarozzi A et al (2014) From the dual function lead AP2238 to AP2469, a multi target directed ligand for the treatment of Alzheimer’s disease. Pharmacol Res Perspect 2(2):e00023

    PubMed  PubMed Central  Google Scholar 

  • Tehrani MB et al (2019) Design, synthesis, and cholinesterase inhibition assay of coumarin-3-carboxamide-N-morpholine hybrids as new anti-Alzheimer agents. Chem Biodivers 16(7):e1900144

    PubMed  Google Scholar 

  • Torres FC et al (2016) Combining the pharmacophore features of coumarins and 1,4-substituted 1,2,3-triazoles to design new acetylcholinesterase inhibitors: fast and easy generation of 4-methylcoumarins/1,2,3-triazoles conjugates via click chemistry. J Brazil Chem Soc 27(9):1541–1550

    CAS  Google Scholar 

  • Tripathi A et al (2020) Efficacy of Quercetin as a potent sensitizer of β2 AR in combating the impairment of fluid clearance in lungs of rats under hypoxia. Respir Physiol Neurobiol 273:103334

    CAS  PubMed  Google Scholar 

  • Tuckerman MBBJM, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97(3):1990–2001

    CAS  Google Scholar 

  • Tyagi YK et al (2008) Synthesis of novel 4-methylcoumarins and comparative specificities of substituted derivatives for acetoxy drug: protein transacetylase. Sci Pharm 76(3):395–414

    CAS  Google Scholar 

  • Tyagi YK et al (2010) In vitro antioxidant activity evaluation of 4-methyl coumarin derivatives. Asian J Chem 22(5):3622–3628

    CAS  Google Scholar 

  • Vassar R, Cole SL (2007) The basic biology of BACE1: a key therapeutic target for Alzheimer’s disease. Curr Genom 8(8):509–530

    Google Scholar 

  • Wang Y, Wang H, Chen HZ (2016) AChE inhibition-based multi-target-directed ligands, a novel pharmacological approach for the symptomatic and disease-modifying therapy of Alzheimer’s disease. Curr Neuropharmacol 14(4):364–375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watts KS et al (2010) ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50(4):534–546

    CAS  PubMed  Google Scholar 

  • Yadav K et al (2019) Review on aetiology, diagnosis and treatment of Alzheimer’s disease. J Drug Deliv Ther 9(3):626–633

    Google Scholar 

  • Yusufzai SK et al (2018) Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease. Chem Cent J 12(1):1–57

    Google Scholar 

  • Zhu Z et al (2019) Inhibiting Aβ toxicity in Alzheimer’s disease by a pyridine amine derivative. Eur J Med Chem 168:330–339

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by FRGS, Guru Gobind Singh Indraparatha University, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Tyagi, Y.K., Kumar, M. et al. Synthesis of novel 4-methylthiocoumarin and comparison with conventional coumarin derivative as a multi-target-directed ligand in Alzheimer’s disease. 3 Biotech 10, 509 (2020). https://doi.org/10.1007/s13205-020-02481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02481-1

Keywords

Navigation