Skip to main content

Advertisement

Log in

Gene set enrichment analysis, network pharmacology and in silico docking approach to understand the molecular mechanism of traditional medicines for the treatment of diabetes mellitus

  • Original Article
  • Published:
Journal of Proteins and Proteomics Aims and scope Submit manuscript

Abstract

Herbal constituents, present in most traditional medicines, are known to act on multiple targets and exert therapeutic activities but often lack scientific evidence at a molecular level. Identification of potential drugs and targets is not only key for validation but also plays an important role in drug discovery. Advances in technologies and computing power, coupled with an enormous increase in available data, have made it possible to decipher the possible molecular mechanism of action of such herbal medicines by focusing on “multi-compounds, multi-targets, and multi-pathways” model through various in silico methods. The current study aims to understand the molecular mechanism of action of 11 common herbs used for the management of diabetes mellitus (DM) and associated complications by utilization of gene set enrichment analysis, network pharmacology, and docking studies. STRING, KEGG pathway, modeller9.10, AutoDock4.0, and DSV2019 were used to perform the study. Compound-gene set enrichment analysis predicted 63 compounds from the 11 plants to modulate 26 protein targets and 11 pathways that are involved in DM. Network analysis identified PI3K-AKT signaling pathway as a key pathway of DM and its associated complications that is modulated by the phytoconstituents. Among the selected phytoconstituents, Apigenin, Quercetin, and Kaempferol showed the highest binding affinity with α-glucosidase (− 6.29 kcal/mol), α-amylase (− 6.95 kcal/mol), and PPAR-γ (− 7.13 kcal/mol), respectively, and interacted with active site residues. The study suggests flavonoids and triterpenes present as major phytoconstituents that regulate the antidiabetic activity and interact with key protein molecules. The study also identified the “PI3K-AKT signaling pathway” as a major pathway involved in the pathogenesis of DM, which is most likely to be strongly modulated by the antidiabetic herbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  • American Diabetes Association (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36:S67–S74

    Article  Google Scholar 

  • Aoyagi T, Matsui T (2011) Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr Pharm Des 17:1818–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian X, Fan X, Ke C, Luan Y, Zhao G, Zeng A (2013) Synthesis and α-glucosidase inhibitory activity evaluation of N-substituted aminomethyl-β-d-glucopyranosides. Bioorg Med Chem 21:5442–54450

    Article  CAS  PubMed  Google Scholar 

  • Caesar LK, Cech NB (2019) Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep 36:845–936

    Article  Google Scholar 

  • Chaudhury A, Duvoor C, Dendi R, Sena V, Kraleti S, Chada A et al (2017) Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol 8:6

    Article  Google Scholar 

  • Chen X, Ji ZL, Chen YZ (2002) TTD: therapeutic target database. Nucleic Acids Res 30:412–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Jiang H, Cao Y, Wang Y, Hu Z, Zhu Z, Chai Y (2016) Drug target identification using network analysis: taking active components in Sini decoction as an example. Sci Rep 6:1–4

    Article  CAS  Google Scholar 

  • Drugs.com (2019) Insulin side effects [Internet]. https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed 29 Dec 2019

  • Eid HM, Haddad PS (2017) The antidiabetic potential of quercetin: underlying mechanisms. Curr Med Chem 24:355–364

    Article  PubMed  CAS  Google Scholar 

  • Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinform 15:5–6

    Article  Google Scholar 

  • Fang XK, Gao J, Zhu DN (2008) Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci 82:615–622

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Weng D, Zhou F, Owen YD, Qin H, Zhao J et al (2016) Activation of PPARγ by a natural flavonoid modulator, apigenin ameliorates obesity-related inflammation via regulation of macrophage polarization. EBioMedicine 9:61–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Habtemariam S (2011) α-Glucosidase inhibitory activity of kaempferol-3-O-rutinoside. Nat Prod Commun 6:201–203

    CAS  PubMed  Google Scholar 

  • Halgren TA, Merck (1996) Molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  • Huang WJ, Fu Q, Xiao YH, Gong Q, Wu WJ, Shen ZL, Zhang H, Jia X, Huang XM, Zhang YX, Zhao JX (2018a) Effect of Qufengtongluo decoction on PI3K/Akt signaling pathway in the kidney of type 2 diabetes mellitus rat (GK Rat) with diabetic nephropathy. Evid Based Complement Altern Med 2018:1–9

    Google Scholar 

  • Huang X, Liu G, Guo J, Su Z (2018b) The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 14:1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain H, Green IR, Abbas G, Adekenov SM, Hussain W, Ali I (2019) Protein tyrosine phosphatase 1B (PTP1B) inhibitors as potential anti-diabetes agents: patent review (2015–2018). Expert Opin Ther Pat 29:689–702

    Article  CAS  PubMed  Google Scholar 

  • Ivanov SM, Lagunin AA, Rudik AV, Filimonov DA, Poroikov VV (2017) ADVERPred–Web service for prediction of adverse effects of drugs. J Chem Inf Model 58:8–11

    Article  PubMed  CAS  Google Scholar 

  • Jacot JL, Sherris D (2011) Potential therapeutic roles for inhibition of the PI3K/Akt/mTOR pathway in the pathophysiology of diabetic retinopathy. J Ophthalmol 2011:1–19

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawser HM, Abdal DA, Han J, Yin Y, Kim K, Kumar SS, Yang GM, Choi H, Cho SG (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 17:569

    Article  CAS  Google Scholar 

  • Khalil H (2017) Diabetes microvascular complications—a clinical update. Diabetes Metab Syndr Clin Res Rev 11:S133–S139

    Article  Google Scholar 

  • Khanal P, Patil BM (2020) α-Glucosidase inhibitors from Duranta repens modulate p53 signaling pathway in diabetes mellitus. Adv Tradit Med 19:1–12

    Google Scholar 

  • Khanal P, Patil BM, Mandar BK, Dey YN, Duyu T (2019) Network pharmacology-based assessment to elucidate the molecular mechanism of anti-diabetic action of Tinospora cordifolia. Clin Phytosci 5:35

    Article  CAS  Google Scholar 

  • Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J (2016) PubChem substance and compound databases. Nucleic Acids Res 4:D1202–D1213

    Article  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Lebovitz HE (1997) Alpha-glucosidase inhibitors. Endocr Metab Clin 26:539–551

    Article  CAS  Google Scholar 

  • Li H, Song F, Xing J, Tsao R, Liu Z, Liu S (2009) Screening and structural characterization of α-glucosidase inhibitors from hawthorn leaf flavonoids extract by ultrafiltration LC-DAD-MS n and SORI-CID FTICR MS. J Am Soc Mass Spectrom 20:1496–1503

    Article  CAS  PubMed  Google Scholar 

  • Li W, Yuan G, Pan Y, Wang C, Chen H (2017) Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: a review. Front Pharmacol 8:74

    PubMed  PubMed Central  Google Scholar 

  • Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2006) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198–D201

    Article  PubMed  PubMed Central  Google Scholar 

  • Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, del Cañizo-Gómez FJ (2016) Update on the treatment of type 2 diabetes mellitus. World J Diabetes 7:354–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TP (2007) Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 40:163–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyetayo FL, Akomolafe SF, Oladapo IF (2019) A comparative study on the estimated glycemic index (eGI), phenolic constituents, antioxidative and potential antihyperglycemic effects of different parts of ripe Citrus paradisi fruit. Orient Pharm Exp Med 19:81–89

    Article  CAS  Google Scholar 

  • Patil VS, Khatib NA (2020) Triterpene saponins from Barringtonia acutangula (L.) Gaertn as a potent inhibitor of 11β-HSD1 for type 2 diabetes mellitus, obesity, and metabolic syndrome. Clin Phytosci 6:61

    Article  CAS  Google Scholar 

  • Patil P, Mandal S, Tomar SK, Anand S (2015) Food protein-derived bioactive peptides in management of type 2 diabetes. Eur J Nutr 54:863–880

    Article  CAS  PubMed  Google Scholar 

  • Patil VS, Biradar PR, Attar V, Khanal P (2019) In silico docking analysis of active biomolecules from Cissus quadrangularis L. against PPAR-γ. Indian J Pharm Educ 53:S332–S337

    Article  CAS  Google Scholar 

  • Peng X, Zhang G, Liao Y, Gong D (2016) Inhibitory kinetics and mechanism of kaempferol on α-glucosidase. Food Chem 190:207–215

    Article  CAS  PubMed  Google Scholar 

  • Ramsay RR, Popovic-Nikolic MR, Nikolic K, Uliassi E, Bolognesi ML (2018) A perspective on multi-target drug discovery and design for complex diseases. Clin Trans Med 7:3

    Article  Google Scholar 

  • Rathore PK, Arathy V, Attimarad VS, Kumar P, Roy S (2016) In-silico analysis of gymnemagenin from Gymnema sylvestre (Retz.) R. Br. with targets related to diabetes. J Theor Biol 391:95–101

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol 6:41–47

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivashanmugam AT, Chatterjee TK (2013) In vitro and in vivo antidiabetic activity of Polyalthia longifolia (Sonner.) Thw. leaves. Orient Pharm Exp Med 13:289–300

    Article  Google Scholar 

  • Su ZR, Fan SY, Shi WG, Zhong BH (2015) Discovery of xanthine oxidase inhibitors and/or α-glucosidase inhibitors by carboxyalkyl derivatization based on the flavonoid of apigenin. Bioorg Med Chem Lett 25:2778–2781

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  • Tan SY, Wong JLM, Sim YJ, Wong SS, Elhassan SAM, Tan SH, Lim GPL, Tay NWR, Annan NC, Bhattamisra SK, Candasamy M (2019) Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr Clin Res Rev 13:364–372

    Article  Google Scholar 

  • Testa R, Bonfigli AR, Genovese S, De Nigris V, Ceriello A (2016) The possible role of flavonoids in the prevention of diabetic complications. Nutrients 8:310

    Article  PubMed Central  CAS  Google Scholar 

  • Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2:236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinayagam R, Xu B (2015) Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab 12:60

    Article  CAS  Google Scholar 

  • World Health Organisation (2019) Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed 12 Dec 2019

  • Yang M, Chen J, Xu L, Shi X, Zhou X, An R, Wang X (2018) A network pharmacology approach to uncover the molecular mechanisms of herbal formula Ban-Xia-Xie-Xin-Tang. Evid Based Complement Altern Med 2018:1–22

    Google Scholar 

  • Yaryura-Tobias JA, Pinto A, Neziroglu F (2001) Anorexia nervosa, diabetes mellitus, brain atrophy, and fatty liver. Int J Eat Disord 30:350–353

    Article  CAS  PubMed  Google Scholar 

  • Zanatta L, Rosso A, Folador P, Figueiredo MS, Pizzolatti MG, Leite LD, Silva FR (2008) Insulinomimetic effect of kaempferol 3-neohesperidoside on the rat soleus muscle. J Nat Prod 71:532–535

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu D (2011) Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol 670:325–332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Biomedical Informatics Centre, ICMR-National Institute of Traditional Medicine, Belagavi, India, for supporting this study.

Funding

This work has not received any funds from national or international agencies.

Author information

Authors and Affiliations

Authors

Contributions

VSP, main worker, designed and performed the study, wrote and drafted the manuscript. SD performed network pharmacology, docking study and revision of manuscript. ASP, RV and SN reviewed literature, data analysis, and were responsible for revision of manuscript. HDR and SR supervised the study, provided inputs, reviewed drafts, and finalized the manuscript.

Corresponding author

Correspondence to Subarna Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, V.S., Deshpande, S.H., Harish, D.R. et al. Gene set enrichment analysis, network pharmacology and in silico docking approach to understand the molecular mechanism of traditional medicines for the treatment of diabetes mellitus. J Proteins Proteom 11, 297–310 (2020). https://doi.org/10.1007/s42485-020-00049-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42485-020-00049-4

Keywords

Navigation