Skip to main content
Log in

Dynamic changes of lipids in Eucommia ulmoides rubber particles and the relationship between the biosynthesis of SQDG and E. ulmoides rubber

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Eucommia ulmoides rubber particles (EuRPs) are organelles that synthesise and store E. ulmoides rubber (EuR). In this study, the lipids dynamic change of EuRPs from leaf tissue at different growth period were investigated. The results showed that there were 1149 lipid species belonging to 39 lipid classes that were identified; TGs, DGs and Cers were the most abundant among all lipids of EuRPs. Lipid expression analysis demonstrated that the expression intensity of TGs was almost 1 × 104-fold and 10-fold higher than those of MGs and DGs, respectively. Among sphingolipids, the expression intensity of SoP, CerG2, GM3, SM and GerG3 increased throughout the duration of investigation (August–November 2021). Further analysis found that the Cers species accounted for 9.40% of total lipid species and the number of Cers species in EuRPs isolated from leaves in August was the most, with gradual decline in the following 3 months. Meanwhile, hierarchical clustering indicated that there were seven types of highly abundant lipid species in leaf EuRPs from September to November, i.e. SQDG (18:3/18:3), SQDG (34:3), SQDG (17:5/23:2), DGDG (38:12), Co (Q9), TG (16:0/16:0/18:3) and TG (39:1). Compared with leaf EuRPs in August, there were 79, 101 and 107 lipid species which showed significant differential expression in September, October and November. Based on the high expression intensity of SQDG in EuRPs, the correlation between the genes mediated in EuR or SQDG biosynthesis was further analysed, whereby the results indicated co-expression of some genes, which implies the synergistic regulatory role in SQDG EuR biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Bamba T, Fukusaki E, Kajivama SI, Ute K, Kitayama T (2001) A Kobayashi the occurrence of geometric polyprenol isomers in the rubber-producing plant, Eucommia ulmoides oliver. Lipids 36:727–732

    Article  CAS  PubMed  Google Scholar 

  2. Zhang ZY, Zhang HD, Turland NJ (2003) Eucommiaceae. In: Wu ZY, Raven PH, Hong DY (eds.), Flora of China. Science Press, Beijing, China; Missouri Botanical Garden, St. Louis, p 43

  3. Du HY (2003) Guutta-percha-content character, its variance and selection of superior clone associated with Eucommia ulmoides Olv. Dissertation, Central-South Forestry University, Changsha

  4. Kang H, Luo S, Du H, Han L, Li D, Li L (2022) Bio-based Eucommia ulmoides gum composites with high electromagnetic interference shielding performance. Polymers 14:970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ren N, Gong W, Zhao Y, Zhao DG, Xu Y (2023) Innovation in sweet rice wine with high antioxidant activity: Eucommia ulmoides leaf sweet rice wine. Front Nutr 9:1108843

    Article  PubMed  PubMed Central  Google Scholar 

  6. Takeno S, Bamba T, Nakazawa Y, Fukusaki E, Okazawa A, Kobayashi A (2008) Quantification of trans-1, 4-polyisoprene in Eucommia ulmoides by fourier transform infrared spectroscopy and pyrolysis-gas chromatography/mass spectrometry. J Biosci Bioeng 105:355–359

    Article  CAS  PubMed  Google Scholar 

  7. Du HY, Hu WZ, Yu R (2015) The report on development of China’s Eucommia rubber resources and industry (2014–2015). Social Sciences Academic Press, Beijing

    Google Scholar 

  8. Tokumoto Y, Uefuji H, Yamamotoa N, Kajiura H, Takeno S, Suzuki N, Nakazawa Y (2017) Gene coexpression network for trans-1, 4-polyisoprene biosynthesis involving mevalonate and methylerythritol phosphate pathways in Eucommia ulmoides oliver. Plant Biotechnol 34:165–172

    Article  CAS  Google Scholar 

  9. Wang L, Wuyun T, Du H, Wang D, Cao D (2016) Complete chloroplast genome sequences of Eucommia ulmoides: genome structure and evolution. Tree Genet Genomes 12:958

    Article  Google Scholar 

  10. Juan ED, Zhan K, Liang S, Ma X (2007) A study on the mechanisms of synthesis and accumulation of rubber in the leaves of Eucommia ulmoides Oliver. In: International Symposium on Eucommia ulmoides. Japanese Society of Eucommia. Vol 1, pp 86–90

  11. Du HY, Du LY, Xie BX, Wuyun TN (2006) Formation and accumulation of gutta-percha in Eucommia leaves. J Central South Coll For 02(2006):1–6

    Google Scholar 

  12. Nakazawa Y, Bamba T, Takeda T, Uefuji H, Harada Y, Li X, Chen R, Inoue S, Tutumi M, Shimizu T, Su YQ, Gyokusen K, Fukusaki E, Kobayashi A (2009) Production of Eucommia-rubber from Eucommia ulmoides oliv (hardy rubber tree). Plant Biotechnol 26:71–79

    Article  CAS  Google Scholar 

  13. Cui YH, Wang M, Sun KL (1999) Morphological study of gutta-containing cells in Eucommia ulmoides Oliv. Chin Bull Botany 16:439–443

    Google Scholar 

  14. Tian LX, Lu M, Hu ZH (1990) Studies on the initiation and development of gutta-containing cells of Eucommia ulmoides oliv. Acta Botanica Sinica 32:1–6

    Google Scholar 

  15. Zhou LY, Li B, Su YQ (2001) Studies on the shape features of gutta-containing cells of Eucommia ulmoides. Acta Botan Boreali-Occiden Sin 21:566–569

    Google Scholar 

  16. Shen Y, He P, Qin JZ, Dong WB (2006) A study on gutta-containing cell of Eucommia ulmoides. J Northwest For Univ 21:41–44

    Google Scholar 

  17. Singh AP, Wi SG, Chung GC, Kim YS, Kang H (2003) The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis. J Exp Bot 54:985–992

    Article  CAS  PubMed  Google Scholar 

  18. Siler DJ, Goodrich-Tanrikulu M, Cornish K, Stafford AE, Mckeon TA (1997) Composition of rubber particles of Hevea brasiliensis, Parthenium argentatum, Ficus elastica, and Euphorbia lactiflua indicates unconventional surface structure. Plant Physiol Biochem 35:881–889

    CAS  Google Scholar 

  19. Wood DF, Cornish K (2000) Microstructure of purified rubber particles. Int J Plant Sci 161:435–445

    Article  CAS  PubMed  Google Scholar 

  20. Cornish K, Wood DF, Windle JJ (1999) Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin abelling, are found to consist of a homogenous rubber core enclosed by a contiguous, monolayer biomembrane. Planta 210:85–96

    Article  CAS  PubMed  Google Scholar 

  21. Kawahara S, Tanaka Y (2009) Structure of natural rubber. 天然ゴムの構造. 82:417–423

  22. Tarachiwin L, Sakdapipanich J, Ute K, Kitayama T, Tanaka Y (2005) Structrual characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Biomacromol 6:1858–1863

    Article  CAS  Google Scholar 

  23. Yamamoto Y, Nghia PT, Klinklai W, Saito T, Kawahara S (2008) Removal of proteins from natural rubber with urea and its application to continuous processes. J Appl Polym Sci 107:2329–2332

    Article  CAS  Google Scholar 

  24. Yu H, Wang Q, Li J, Liu Y, He D, Yu H (2017) Effect of lipids on the stability of natural rubber latex and tensile properties of its films. J Rubber Res 20:213–222

    Article  CAS  Google Scholar 

  25. Liengprayoon S, Bonfils F, Sainte-Beuve J, Sriroth K, Dubreucq E, Vaysse L (2008) Lipid composition of natural rubber sheet and relationship with its structure and properties. IRRDB Nat Rubber Conf Selangor Malaysia 10:13–15

    Google Scholar 

  26. Chan AJ, Steenkeste K, Eloy M, Brosson D, Gaboriaud F, Fontaine-Aupart M (2015) Lipid content in small and larger natural rubber particles. Rubber Chem Technol 88:248–257

    Article  CAS  Google Scholar 

  27. Yang ZW, Qin LJ, Zhao DG (2019) Extraction, purification and microscopic observation of rubber particles extracted from Eucommia ulmoides. For Res 32:115–121

    Google Scholar 

  28. ZW Yang (2019) Analysis of fatty acid composition of gutta-percha granules in Eucommia ulmoides. In: Master Dissertation. Guizhou University, Guiyang

  29. Giavalisco P, Li Y, Matthes A, Eckhardt A, Hubberten HM, Hesse H, Segu S, Hummel J, Köhl K, Willmitzer L (2011) Elemental formula annotation of polar and lipophilic metabolites using 13C, 15N and 34S isotope labelling, in combination with high-resolution mass spectrometry. Plant J 68:364–376

    Article  CAS  PubMed  Google Scholar 

  30. Liengprayoon S, Sriroth K, Dubreucq E, Vaysse L (2011) Glycolipid composition of Hevea brasiliensis latex. Phytochemistry 72:1902–1913

    Article  CAS  PubMed  Google Scholar 

  31. Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52(4):590–614

    Article  CAS  PubMed  Google Scholar 

  32. W Stillwell (2016) An introduction to biological membranes: composition, structure and function. Elsevier, 978-0-444-63772-7

  33. Shimojima M (2011) Biosynthesis and functions of the plant sulfolipid. Prog Lipid Res 50:234–239

    Article  CAS  PubMed  Google Scholar 

  34. Ran X, Zhao DG (2020) The relationship between rubber molecular weight and expression of EuREF1 genes in Eucommia ulmoides olive. For Res 33:35–41

    Google Scholar 

  35. Chen R, Harada Y, Bamba T, Nakazawa Y, Gyokusen K (2012) Overexpression of an isopentenyl diphosphate isomerase gene to enhance trans-polyisoprene production in Eucommia ulmoides oliver. BMC Biotechnol 30(12):78

    Article  Google Scholar 

  36. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Rochus BF, Ian AG, Kenta K, Amélie AK, Tony L, Jonathan EM, Martine M, Isabel M, Ikuo N, Owen R, Lacey S, Katherine MS, Hajime W, Ruth W, Changcheng X, Rémi Z, John O (2013) Acyl-lipid metabolism. Arab Book 11:e0161

    Article  Google Scholar 

  38. Chapman KD, Ohlrogge JB (2012) Compartmentation of triacylglycerol accumulation in plants. J Biol Chem 287:2288–2294

    Article  CAS  PubMed  Google Scholar 

  39. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sunshine H, Iruela-Arispe ML (2017) Membrane lipids and cell signaling. Curr Pinion Lipidol 28:408–413

    Article  CAS  Google Scholar 

  41. Noack LC, Jaillais Y (2020) Functions of anionic lipids in plants. Annu Rev Plant Biol 71:71–102

    Article  CAS  PubMed  Google Scholar 

  42. Beare-Rogers J, Dieffenbacher A, Holm JV (2001) International union of pure and applied chemistry joint committee of international union of nutritional sciences and IUPAC commission on food * lexicon of lipid nutrition (IUPAC technical report). Pure Appl Chem 73:685–744

    Article  CAS  Google Scholar 

  43. Nakamura Y (2017) Plant phospholipid diversity: emerging functions in metabolism and protein–lipid interactions. Trends Plant Sci 22:1027–1040

    Article  CAS  PubMed  Google Scholar 

  44. Mackender RO, Leech RM (1974) The galactolipid, phospholipid, and fatty acid composition of the chloroplast envelope membranes of Vicia faba L. Plant Physiol 53:496–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Micoogullari Y, Basu SS, Ang J, Weisshaar N, Schmitt ND, Abdelmoula WM, Hanna J (2019) Dysregulation of very long chain fatty acid metabolism causes membrane saturation and induction of the unfolded protein response running title: VLCFAs and protein quality control. Mol Biol Cell 31:1–17

    Google Scholar 

  46. Ben HK, Ben YN, Ranieri A, Zarrouk M, Abdelly C (2005) Changes in content and fatty acid profiles of total lipids and sulfolipids in the halophyte Crithmum maritimum under salt stress. J Plant Physiol 162:599–602

    Article  Google Scholar 

  47. Härtel H, Dörmann P, Benning C (2005) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97:10649–10654

    Article  Google Scholar 

  48. Awai K, Maré Chal E, Block MA, Brun D, Masuda T, Shimada H, Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:10960–10965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kobayashi K, Kondo M, Fukuda H, Nishimura M, Ohta H (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci USA 104:17216–17221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pugh CE, Roy AB, Hawkest T, Harwood JL (1995) A new pathway for the synthesis of the plant sulpholipid, sulphoquinovosyldiacylglycerol. Biochem J 309:513–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kirchhoff H, Haase W, Wegner S, Danielsson R, Ackermann R, Albertsson PA (2007) Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry 46:11169–11176

    Article  CAS  PubMed  Google Scholar 

  52. Kirchhoff H (2008) Molecular crowding and order in photosynthetic membranes. Trends Plant Sci 13:201–207

    Article  CAS  PubMed  Google Scholar 

  53. Kobayashi K, Endo K, Wada H (2017) Specific distribution of phosphatidylglycerol to photosystem complexes in the thylakoid membrane. Front Plant Sci 8:1–7

    Article  Google Scholar 

  54. Block MA, Dorne AJ, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts 11. Biochemical characterization. J Biol Chem 258:13281–13286

    Article  CAS  PubMed  Google Scholar 

  55. Garab G, Lohner K, Laggner P, Farkas T (2000) Selfregulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci 5:489–494

    Article  CAS  PubMed  Google Scholar 

  56. Dlouhý O, Kurasová I, Karlický V, Avornik JU, Šket P, Petrova NZ, Garab G (2020) Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water-soluble enzyme violaxanthin deepoxidase. Sci Rep 10:11959

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen J, Burke JJ, Xin Z, Xu C, Velten J (2006) Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance. Plant Cell Environ 29:1437–1448

    Article  CAS  PubMed  Google Scholar 

  58. Mamode CA, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Mongrand S (2019) Plant lipids: key players of plasma membrane organization and function. Prog Lipid Res 73:1–27

    Article  Google Scholar 

  59. Sato M, Nagano M, Jin S, Miyagi A, Yamaguchi M, Kawai YM, Ishikawa T (2020) Plant-unique cis/trans isomerism of long-chain base unsaturation is selectively required for aluminum tolerance resulting from glucosylceramide-dependent plasma membrane fluidity. Plants 9:1–14

    Google Scholar 

  60. Michaelson LV, Napier JA, Molino D, Faure JD (2016) Plant sphingolipids: their importance in cellular organization and adaption. BBA-Mol Cell Biol L 1861:1329–1335

    CAS  Google Scholar 

  61. Karlsson KA (1970) Sphingolipid long chain bases. Lipids 5:878–891

    Article  CAS  PubMed  Google Scholar 

  62. Lynch DV, Dunn TM (2004) An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytol 16:677–702

    Article  Google Scholar 

  63. Bae SW, Jung S, Choi SC, Kim MY, Ryu SB (2020) Lipid composition of latex and rubber particles in Hevea brasiliensis and Taraxacum kok-saghyz. Molecules 25:5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li M, Wang K, Xiong Y (2021) Multiple intermolecular interaction to improve the Abrasion resistance and wet skid resistance of Eucommia Ulmoides gum/styrene butadiene rubber composite. Materials 14:5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CZ: data curation, writing—original draft; TY: investigation, data curation; LQ: writing—review and editing.

Corresponding author

Correspondence to Lijun Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Supplementary file2 (DOCX 1310 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Yuan, T. & Qin, L. Dynamic changes of lipids in Eucommia ulmoides rubber particles and the relationship between the biosynthesis of SQDG and E. ulmoides rubber. J Rubber Res 27, 33–46 (2024). https://doi.org/10.1007/s42464-023-00232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-023-00232-4

Keywords

Navigation