Skip to main content

Advertisement

Log in

The use of Landsat-8 and Sentinel-2 imageries in detecting and mapping rubber trees

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Information on rubber tree (Hevea brasiliensis) areas and stages of rubber tree growth is needed in making decisions to maximise land use and for efficient farm management. The use of conventional methods in collecting this information requires a long time, high costs, and constraints to access certain areas. Therefore, this study was conducted to evaluate Landsat-8 OLI and Sentinel-2 images in detecting and mapping the rubber tree area. This study presents a pixel-based supervised classification approach to obtain an accurate map of land cover and rubber tree growth stage distribution using resampled 10 m spatial resolution of Sentinel-2 and pansharpened 15 m Landsat-8 OLI. Seven land cover classes (bare soil, water, mature rubber, immature rubber, oil palm, forest, and built-up area) were classified using support vector machine (SVM), artificial neural network (ANN) and spectral angle mapper (SAM). The results showed that the highest classification accuracy was obtained using SVM, 87.22% for Sentinel-2 and 85.74% for Landsat-8. Next, the classification accuracies of ANN were almost similar with 86.17% and 82.39% for Sentinel-2 and Landsat-8, respectively. SAM has produced less than 60% of acceptable accuracy for both datasets. The performance of the aforementioned classifiers was statistically tested using a McNemar test. The test showed that the p-value between SVM and ANN was not significant and thus, ANN and SVM produced similar accuracies and outperformed SAM for both cases. In this study, the best output produced via SVM from Sentinel-2 was selected to produce the thematic map due to the spatial accuracy advantage of Sentinel-2 compared to Landsat-8. The calculated areas of immature and mature rubber from the thematic map were 7.79 km2 and 10.93 km2, respectively, which then used to estimate the number of tappers needed for the management of rubber. It is concluded that the Sentinel-2 Multispectral Instrument (MSI) data can be recommended to be used in rubber cultivation area assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotechnol 53:355–365. https://doi.org/10.1007/s002530051627

    Article  CAS  Google Scholar 

  2. Malaysian Rubber Board (2018) Natural rubber statistic Jan–Dec 2018. http://www.lgm.gov.my/nrstat/Statistics%20Website%202018%20(Jan-Dec).pdf. Accessed 20 Dec 2019

  3. Saufe NA (2017) Social adaptation level towards unstable rubber price among malaysian rubber smallholders. IOSR J Agric Vet Sci 10:29–32. https://doi.org/10.9790/2380-1002022932

    Article  Google Scholar 

  4. Malaysian Rubber Board (2020a) SMR 20 price chart (2010–2019). http://www3.lgm.gov.my/mre/pdf/Poster%202010-2019-f.pdf. Accessed 3 Jan 2020

  5. Waldner F, De Abelleyra D, Verón SR, Zhang M, Wu B, Plotnikov D, Bartalev S et al (2016) Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. Int J Remote Sens 37:3196–3231. https://doi.org/10.1080/01431161.2016.1194545

    Article  Google Scholar 

  6. Li Q, Wang C, Zhang B, Lu L (2015) Object-based crop classification with Landsat-MODIS enhanced time-series data. Remote Sens 7:16091–16107. https://doi.org/10.3390/rs71215820

    Article  Google Scholar 

  7. Gao F, Anderson MC, Zhang X, Yang Z, Alfieri JG, Kustas WP et al (2017) Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens Environ 188:9–25. https://doi.org/10.1016/j.rse.2016.11.004

    Article  Google Scholar 

  8. Gallego FJ, Kussul N, Skakun S, Kravchenko O, Shelestov A, Kussul O (2014) Efficiency assessment of using satellite data for crop area estimation in Ukraine. Int J Appl Earth Obs Geoinf 29:22–30. https://doi.org/10.1016/j.jag.2013.12.013

    Article  Google Scholar 

  9. Clevers JGPW, Kooistra L, van den Brande MMM (2017) Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sens 9:405–419. https://doi.org/10.3390/rs9050405

    Article  Google Scholar 

  10. Delloye C, Weiss M, Defourny P (2018) Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sens Environ 216:245–261. https://doi.org/10.1016/j.rse.2018.06.037

    Article  Google Scholar 

  11. Veysi S, Naseri AA, Hamzeh S, Bartholomeus H (2017) A satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agric Water Manag 189:70–86. https://doi.org/10.1016/j.agwat.2017.04.016

    Article  Google Scholar 

  12. Marin DB, de Carvalho AM, Pozza EA, Belan LL, de Freitas MLO (2019) Multispectral radiometric monitoring of bacterial blight of coffee. Precis Agric 20:959–982. https://doi.org/10.1007/s11119-018-09623-9

    Article  Google Scholar 

  13. Nguyen HTT, Doan TM, Radeloff V (2018) Applying random forest classification to map land use/land cover using Landsat 8 OLI. Int Arch Photogramm Remote Sens Spatial Inf Sci 42:363–367. https://doi.org/10.5194/isprs-archives-XLII-3-W4-363-2018

    Article  Google Scholar 

  14. Han P, Chen J, Han Y, Yi L, Zhang Y, Jiang X (2018) Monitoring rubber plantation distribution on Hainan Island using Landsat OLI imagery. Int J Remote Sens 39:2189–2206. https://doi.org/10.1080/01431161.2017.1420933

    Article  Google Scholar 

  15. Fan H, Fu X, Zhang Z, Wu Q (2015) Phenology-based vegetation index differencing for mapping of rubber plantations using landsat OLI data. Remote Sens 7:6041–6058. https://doi.org/10.3390/rs70506041

    Article  Google Scholar 

  16. Xiao C, Li P, Feng Z (2019) A renormalized modified normalized burn ratio (RMNBR) index for detecting mature rubber plantations with Landsat-8 OLI in Xishuangbanna, China. Remote Sens Lett 10:214–223. https://doi.org/10.1080/2150704X.2018.1541106

    Article  Google Scholar 

  17. Hazir MHM, Muda TMT (2018) The viability of remote sensing for extracting rubber smallholding information: a case study in Malaysia. Egypt J Remote Sens Space Sci 23:35–47. https://doi.org/10.1016/j.ejrs.2018.05.001

    Article  Google Scholar 

  18. Dibs H, Idrees MO, Alsalhin GBA (2017) Hierarchical classification approach for mapping rubber tree growth using per-pixel and object-oriented classifiers with SPOT-5 imagery. Egypt J Remote Sens Space Sci 20:21–30. https://doi.org/10.1016/j.ejrs.2017.01.004

    Article  Google Scholar 

  19. Dibs H, Mansor S (2014) Mapping rubber tree growth by spectral angle mapper spectral-based and pixel-based classification using SPOT-5 image. In: 35th Asian conference on remote sensing 2014, ACRS 2014: sensing for Reintegration of Societies.

  20. Razak JAA, Shariff ARM, Ahmad N, Sameen MI (2018) Mapping rubber trees based on phenological analysis of Landsat time series data-sets. Geocarto Int 33:627–650. https://doi.org/10.1080/10106049.2017.1289559

    Article  Google Scholar 

  21. Malaysian Rubber Board (2014) Panduan Ladang 2014. Stesen Penyelidikan Kota Tinggi, Lembaga Getah Malaysia

    Google Scholar 

  22. Trimble Navigation (1996) Trimble Pathfinder Office Software Reference Guide. Trimble Navigation, Ltd., Sunnyvale, CA, p 432

  23. ESRI (2011) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, CA

  24. Harris Geospatial Solutions (2016) Using ENVI; Harris Geospatial Solutions: Broomfield, CO, USA. http://www.harrisgeospatial.com/docs/routines-136.html. Accessed 26 Aug 2020

  25. PCI Geomatics, Geomatica Online Help (2018) Available online: http://www.pcigeomatics.com/geomatica-help/. Accessed 29 June 2019

  26. Shaharum NSN, Shafri HZM, Gambo J, Abidin FAZ (2018) Mapping of Krau Wildlife Reserve (KWR) protected area using Landsat 8 and supervised classification algorithms. Remote Sens Appl Soc Environ 10:24–35. https://doi.org/10.1016/j.rsase.2018.01.002

    Article  Google Scholar 

  27. SNAP (2016) Snap Open Source Software. http://step.esa.int/main/toolboxes/snap/. Accessed 26 Jan 2019

  28. Richter R (2007) Atmospheric/topographic correction for satellite imagery. https://www.dlr.de/eoc/en/Portaldata/60/Resources/dokumente/5_tech_mod/atcor3_manual_2012.pdf. Accessed 20 Dec 2019

  29. Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66:247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001

    Article  Google Scholar 

  30. Kuo BC, Ho HH, Li CH, Hung CC, Taur JS (2014) A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification. IEEE J Select Top Appl Earth Obs Remote Sens 7:317–326. https://doi.org/10.1109/JSTARS.2013.2262926

    Article  Google Scholar 

  31. Keshtkar H, Voigt W, Alizadeh E (2017) Land-cover classification and analysis of change using machine-learning classifiers and multi-temporal remote sensing imagery. Arab J Geosci 10:1–15. https://doi.org/10.1007/s12517-017-2899-y

    Article  Google Scholar 

  32. Number of nodes in the layers for neural net (2013). https://www.l3harrisgeospatial.com/Support/Maintenance-Detail/ArtMID/13350/ArticleID/19285. Accessed 1 July 2020

  33. Mas JF, Flores JJ (2008) The application of artificial neural networks to the analysis of remotely sensed data. Int J Remote Sens 29:617–663. https://doi.org/10.1080/01431160701352154

    Article  Google Scholar 

  34. Harris Geospatial Solutions (2017) Spectral angle mapper. Exelis Visual information solutions, Inc. https://doi.org/10.1002/(SICI)1096-9926(199606)54:2<84::AID-TERA4>3.0.CO;2-4

  35. Shang K, Zhang L, Xie Y (2011) Evaluation of hyperspectral classification methods based on FISS data. In MIPPR 2011: multispectral image acquisition. Process Anal 8802:1–8. https://doi.org/10.1117/12.902908

    Article  Google Scholar 

  36. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. https://doi.org/10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  37. Phinn SR, Roelfsema CM, Mumby PJ (2012) Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int J Remote Sens 33:3768–3797. https://doi.org/10.1080/01431161.2011.633122

    Article  Google Scholar 

  38. Aziz AA (2014) Integrating a Redd + Project into the Management of a Production Mangrove Forest in Matang Forest Reserve, Malaysia. Dissertation, University of Queensland, Australia

  39. Kamal M, Phinn S, Johansen K (2015) Object-based approach for multi-scale mangrove composition mapping using multi-resolution image datasets. Remote Sens 7:4753–4783. https://doi.org/10.3390/rs70404753

    Article  Google Scholar 

  40. Trajman A, Luiz RR (2008) McNemar χ2 test revisited: comparing sensitivity and specificity of diagnostic examinations. Scand J Clin Lab Invest 68:77–80. https://doi.org/10.1080/00365510701666031

    Article  CAS  Google Scholar 

  41. Fagerland MW, Lydersen S, Laake P (2013) The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional. BMC Med Res Methodol 13:91–98

    Article  Google Scholar 

  42. Dwyer AJ (1991) Matchmaking and McNemar in the comparison of diagnostic modalities. Radiology 178:328–330. https://doi.org/10.1148/radiology.178.2.1987587

    Article  CAS  Google Scholar 

  43. Foody GM (2009) Sample size determination for image classification accuracy assessment and comparison. Int J Remote Sens 30:5273–5291. https://doi.org/10.1080/01431160903130937

    Article  Google Scholar 

  44. Foody GM (2004) Thematic map comparison. Photogramm Eng Remote Sens 70:627–633. https://doi.org/10.1458/PERS.70.5.627

    Article  Google Scholar 

  45. Malaysian Rubber Board (2009) Rubber plantation and processing technologies, 1st edn. Malaysia Rubber Board, Serdang, p 301 (ISBN: 978-983-2088-31-8)

    Google Scholar 

  46. Yonezawa C (2007) Maximum likelihood classification combined with spectral angle mapper algorithm for high resolution satellite imagery. Int J Remote Sens 28:3729–3737. https://doi.org/10.1080/01431160701373713

    Article  Google Scholar 

  47. Park B, Windham WR, Lawrence KC, Smith DP (2007) Contaminant classification of poultry hyperspectral imagery using a spectral angle mapper algorithm. Biosyst Eng 96:323–333. https://doi.org/10.1016/j.biosystemseng.2006.11.012

    Article  Google Scholar 

  48. Cho MA, Debba P, Mathieu R, Naidoo L, Van Aardt JAN, Asner GP (2010) Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach: canopy-level analysis. IEEE Trans Geosci Remote Sens 48:4133–4142. https://doi.org/10.1109/TGRS.2010.2058579

    Article  Google Scholar 

  49. Shafri HZM (2016) Machine learning in hyperspectral and multispectral remote sensing data analysis. Artif Intell Sci Technol. https://doi.org/10.1142/9789813206823_0001

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Universiti Putra Malaysia (UPM) and Malaysian Rubber Board, for their support and facilities throughout the project. Comments from anonymous reviewers towards the improvement of the paper are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmi Zulhaidi Mohd Shafri.

Ethics declarations

Conflict of interest

The authors whose names are listed immediately below certify that they have no affiliations with or involvement in any organisation or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusof, N., Shafri, H.Z.M. & Shaharum, N.S.N. The use of Landsat-8 and Sentinel-2 imageries in detecting and mapping rubber trees. J Rubber Res 24, 121–135 (2021). https://doi.org/10.1007/s42464-020-00078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-020-00078-0

Keywords

Navigation