Skip to main content
Log in

Effect of density parameter in a disk made of orthotropic material and rubber

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

The objective of this paper is to present the study of density parameter in a disk made of orthotropic material and rubber by using Seth’s transition theory. This theory includes classical macroscopic solving problems in plasticity, creep relaxation, and semi-empirical yield conditions. It has been observed that disk made of rubber material requires higher angular speed to yield at the internal surface in comparison to disk made Barytes material at the transition state and for the full-plastic state having density parameter \(m > 0\). The value of circumferential stress is maximum at the internal surface of the rotating disk made of rubber and Barytes materials having density m > 0, whereas the reverse results obtained for \(m \le 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(v\) :

Poisson ratio

\(A_{0}\) :

Constant of integration

\(c_{ijkl}\) :

Elastic constants

\(a,b\) :

Inner and outer radii of the disk

\(c\) :

Compressibility factor

\(\rho\) :

Variable density of material

\(u,v,w\) :

Displacement components

\(r,\theta ,z\) :

Radial, circumferential, and axial directions

\(\omega\) :

Angular velocity of rotation

\(\rho_{0}\) :

Constant density

\(Y,Y^{*}\) :

Yield stress

\(\lambda ,\mu\) :

Lame’s constant

\(\tau_{ij} ,\varepsilon_{ij}\) :

Stress and strain components

m :

Density parameter

\(\Omega_{1}^{2} ,\Omega_{2}^{2}\) :

Angular speed for initial and fully plastic stage (orthotropic material)

\(\Omega_{3}^{2} ,\Omega_{4}^{2}\) :

Angular speed for initial and fully plastic stage (isotropic material)

\(R = {r \mathord{\left/ {\vphantom {r b}} \right. \kern-\nulldelimiterspace} b},R_{0} = {a \mathord{\left/ {\vphantom {a b}} \right. \kern-\nulldelimiterspace} b}\) :

Radii ratio

\(\sigma_{r}\) :

Radial stress component (\({{\tau_{rr} } \mathord{\left/ {\vphantom {{\tau_{rr} } {Y^{*} }}} \right. \kern-\nulldelimiterspace} {Y^{*} }}\))

\(\sigma_{\theta }\) :

Circumferential stress component (\(\tau_{\theta \theta } /Y^{ * }\))

\(\Omega^{2} = {{\rho_{0} \omega^{2} b^{2} } \mathord{\left/ {\vphantom {{\rho_{0} \omega^{2} b^{2} } {Y^{*} }}} \right. \kern-\nulldelimiterspace} {Y^{*} }}\) :

Speed factors

References

  1. Love A (1892) A treatise on the mathematical theory of elasticity, 1st edn. Cambridge University Press, Cambridge, pp 96–97

    Google Scholar 

  2. Sokolinikoff IS (1956) Mathematical theory of elasticity, 2nd edn. McGraw-Hill Book Co., New York

    Google Scholar 

  3. Timoshenko S, Goodier JN (1970) Theory of elasticity. McGraw-Hill Book Co., New York, pp 73–77

    Google Scholar 

  4. Johnson W, Mellor PB (1979) Engineering plasticity. VonNastrand Reinhold, London

    Google Scholar 

  5. Lekhnitskii SG (1981) Theory of elasticity of an anisotropic body. Mir, Moscow, pp 66–78

    Google Scholar 

  6. Arya VK, Bhatnagar NS (1979) Creep analysis of rotating orthotropic disks. Nuclear Eng Des 55(3):323–330

    Article  Google Scholar 

  7. Genta G, Gola M (1981) The stress distribution in orthotropic rotating disks. J Appl Mech 48(3):559–562

    Article  Google Scholar 

  8. Karakuzu R, Sayman O (1994) Elasto-plastic finite element analysis of orthotropic rotating discs with holes. Comput Struct 51(6):695–703

    Article  Google Scholar 

  9. Singh SB, Ray S (2002) Modeling the anisotropy and creep in orthotropicaluminum–silicon carbide composite rotating disc. Mech Mater 34:363–372

    Article  Google Scholar 

  10. Hasan C (2004) Stress analysis of an orthotropic rotating disc under thermal loading. J Reinf Plast Compos 23(17):1859–1867

    Article  Google Scholar 

  11. Hasan Ç, Muzaffer T, Ali RT (2006) Elastic–plastic stress analysis of an orthotropic rotating disc. Int J Mech Sci 48(9):985–990

    Article  Google Scholar 

  12. Saad E, Hakan A (2017) Elastic analysis of variable profile and polar orthotropic FGM rotating disks for a variation function with three parameters. Acta Mech 228(11):3877–3899

    Article  Google Scholar 

  13. Thakur P (2013) Creep transitional stresses of orthotropic thick-walled cylinder under combined axial load under internal pressure. In: Facta Universities Series: mechanical engineering, vol 11, issue 1, pp 13–18. https://facta.junis.ni.ac.rs/me/me201301/me201301-02.html

  14. Thakur P, Shahi S, Singh SB, Sethi M (2019) Elastic–plastic stress concentrations in orthotropic composite spherical shell subjected to internal pressure. Struct Integr Life 19(2):73–77. https://divk.inovacionicentar.rs/ivk/ivk19/ivk1902-1.html

  15. Thakur P, Sethi M (2020) Elasto-plastic deformation in an orthotropic spherical shell subjected to temperature gradient. Math Mech Solids 25(1):26–34

    Article  Google Scholar 

  16. Thakur P, Kumar N, Sukhvinder (2020) Elasto-plastic density variation in a deformable disk. Struct Integr Life 20(1):27–32. https://divk.inovacionicentar.rs/ivk/ivk20/OF2001-5.html

  17. Sethi M, Thakur P (2020) Elasto-plastic deformation in isotropic material disk with shaft subjected to load and variable density. J Rubber Res 23(2):69–78

    Article  CAS  Google Scholar 

  18. Seth BR (1962) Transition theory of elastic-plastic deformation, creep and relaxation. Nature 195:896–897

    Article  CAS  Google Scholar 

  19. Seth BR (1970) Transition condition: the yield condition. Int J Nonlinear Mech 5:279–285

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Thakur.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organisation or entity with any financial or nonfinancial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Gupta, N., Sethi, M. et al. Effect of density parameter in a disk made of orthotropic material and rubber. J Rubber Res 23, 193–201 (2020). https://doi.org/10.1007/s42464-020-00049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-020-00049-5

Keywords

Navigation