Skip to main content
Log in

Recovery of Copper from Industrial Waste Solutions by Cementation Using a Rotating Fixed Bed of Stacked Steel Screens

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

The performance of a rotating fixed bed reactor in recovering copper from industrial waste solutions by cementation is studied under various conditions. The rotating fixed bed is made of stacked woven steel screens to take advantage of two features of screens: the ability to present large area per unit volume and their ability to promote high turbulence. Variables studied are initial CuSO4 concentration, bed rotation speed, mesh number of the screens and bed thickness. The presence of baffles was found to increase the rate of cementation. The data were correlated by a dimensionless mass transfer correlation suitable for the design and operation of large scale cementation reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A:

Screen bed Area,m2

а,a1 :

Constant

Co :

Initial reactant concentration, mol cm−3

C:

Concentration at any time (t), mol cm−3

D:

Diffusivity, cm2 s−1

dw :

Wire diameter of the cylinder,cm

d:

Screen diameter, cm

h:

Bed height, cm

k:

Mass transfer coefficient, m s−1

N:

Rotation Speed, rad/s

ΔP:

Pressure drop

Q:

Solution volume, cm3

r:

Screen radius,cm

t:

Time, min

V:

Linear speed of the rotating screen (V = ωr)

Re:

Reynolds Number \( \left(\frac{\uprho\ \mathrm{N}\ {\mathrm{d}}^2}{\upmu .}\right) \)

Res :

Surface renewal model Reynolds number \( \left(\frac{\uprho\ \mathrm{N}\ {\mathrm{r}}^2}{\upmu}\right) \)

Sc:

Schmidt number \( \left(\frac{\upmu\ }{\uprho\ \mathrm{D}}\right) \)

Sh:

Sherwood number \( \left(\frac{\mathrm{k}\ \mathrm{d}\ }{\mathrm{D}}\right) \)

Res :

Surface renewal model Sherwood number \( \left(\frac{\mathrm{k}\ \mathrm{r}\ }{\mathrm{D}}\right) \)

ε :

\Specific energy dissipation, cm2 s −3

μ :

Solution viscosity, g cm−1 s−1

ν :

Kinematic viscosity, cm2 s −1

ρ :

Solution density, g cm−3

ω :

Rotation speed, rpm \( \left(\upomega =\frac{2\uppi \mathrm{N}}{60}\right) \)

References

  1. Biswas K, Davenport G (1979) Extractive metallurgy of copper. Pergamon Press, New York

    Google Scholar 

  2. Rossi G (1990) Biohydrometallurgy. Mc Graw Hill book Co., New York

    Google Scholar 

  3. Janwong A, De Wet K, Cooper R (2016) Impact of silica on cadmium cementation by zinc dust in a zinc SX/EW plant. Miner Metall Process 33:126

    Google Scholar 

  4. Casado J (2018) Revisiting the mechanism of cementation: the role of hydrogen species in acidic aqueous media. Miner Metall Process 35:55

    Google Scholar 

  5. Abdel-Aziz MH, El-Ashtoukhy E-SZ, Bassyouni M (2016) Recovery of copper from effluents by cementation on aluminum in a multirotating cylinder-agitated vessel. Metallurgical and Materials Transactions B 47:657

    Article  Google Scholar 

  6. Gros F, Baup S, Aurouseau M (2008) Intensified recovery of copper in solution: cementation onto iron in fixed or fluidized bed under electromagnetic field. Chem Eng Process 47:295

    Article  Google Scholar 

  7. Sedahmed GH, El-Taweel YA, Konsowa AH, Abdel-Aziz MH (2011) Mass transfer intensification in an annular electrochemical reactor by an inert fixed bed under various hydrodynamic conditions. Chem Eng Process 50:1122

    Article  Google Scholar 

  8. Gros F, Baup S, Aurousseau M (2011) Copper cementation on zinc and iron mixtures: Part2: fluidized bed configuration. Hydrometallurgy 106:119

    Article  Google Scholar 

  9. El-Batouti M (2005) Removal of copper metal by cementation using a rotating iron cylinder. J Colloid Interface Sci 283:123

    Article  Google Scholar 

  10. Gros F, Baup S, Aurouseau M (2011) Copper cementation on zinc and iron mixtures: Part1: results on rotating disc electrode. Hydrometallurgy 106:127

    Article  Google Scholar 

  11. El-Ashtoukhy ESZ, Abdel-Aziz MH (2013) Removal of copper from aqueous solutions by cementation in a bubble column reactor with horizontal screens. Int J Miner Process 121:65

    Article  Google Scholar 

  12. Kuhn W (1983) Investigation of heat transfer behind an oscillating grid. International Journal of Heat Mass Transfer 26:1347

    Article  Google Scholar 

  13. Visscher F, Schaaf J, Nijhuis T, Schouten J (2013) Rotating reactors – a review. Chem Eng Res Des 91:1923

    Article  Google Scholar 

  14. Abdel-Aziz MH, Nirdosh I, Sedahmed GH (2018) Liquid–solid mass transfer behaviour of heterogeneous reactor made of a rotating tubular packed bed of spheres. Int J Heat Mass Transf 126:1129

    Article  Google Scholar 

  15. Modak J, Bhowal A, Datta S (2016) Extraction of dye from aqueous solutions in rotating packed bed. J Hazard Mater 304:337

    Article  Google Scholar 

  16. Guo K, Wen J, Zhao Y, Wang Y, Zhang Z, Li Z, Qian Z (2014) Optimal packing of a rotating packed bed for H2S removal. Environ Sci Technol 48:6844

    Article  Google Scholar 

  17. Chen Y, Huang Y, Lin R, Shang N (2010) A continuous flow biodiesel production process using a rotating packed bed. Bioresour Technol 101:668

    Article  Google Scholar 

  18. Vogel A (1961) A textbook of quantitative inorganic analysis. Longmans, London

    Google Scholar 

  19. Findlay A, Kitchner J (1965) Practical physical chemistry. Longman, London

    Google Scholar 

  20. Lobo V (1993) Mutual diffusion coefficient in aqueous electrolyte solutions. Pure Appl Chem 65:2613

    Article  Google Scholar 

  21. Walsh F (1993) A first course in electrochemical engineering, The electrochemical consultancy. Hants U.K.

  22. Fahidy Z (1985) Principle of electrochemical reactor analysis. Elsevier, New York

    Google Scholar 

  23. Armour J, Canon J (1968) Fluid flow through woven screens. AICHE J 14:415

    Article  Google Scholar 

  24. Grau J, Bisang J (2005) Mass transfer studies at rotating cylinder electrodes of expanded metal. Journal Applied Electrochemistry 35:285

    Article  Google Scholar 

  25. Cussler E (1988) Diffusion, Mass Transfer in Fluid Systems. Cambridge University Press, New York

    Google Scholar 

  26. Olds hue J (1985) Fluid mixing technology. McGraw Hill

  27. Ruckenstein E (1958) A note concerning turbulent exchange of heat or mass with a boundary. Chem Eng Sci 7:265

    Article  Google Scholar 

  28. Knudsen J, Katz D (1958) Fluid dynamics and heat transfer. Mc Graw Hill, New York

    MATH  Google Scholar 

  29. Calderbank P, Moo-Young M (1961) The continuous phase heat and mass transfer properties of dispersions. Chem Eng Sci 16:39

    Article  Google Scholar 

  30. Coulson J, Richardson J, Backhurst J, Harker J (1978) Chemical engineering unit operation, vol 2. Pergamon Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Abdel-Aziz.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aziz, E.G., El-Naggar, M.A., Nosier, S.A. et al. Recovery of Copper from Industrial Waste Solutions by Cementation Using a Rotating Fixed Bed of Stacked Steel Screens. Mining, Metallurgy & Exploration 37, 453–458 (2020). https://doi.org/10.1007/s42461-020-00191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-020-00191-z

Keywords

Navigation