Skip to main content
Log in

Contribution to the Examination of the Mechanisms of Copper Loss with the Slag in the Process of Sulfide Concentrates Smelting

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

This paper presents the results of an experimental investigation into the distribution of copper in the slag of an industrial reverberatory furnace sulfide concentrates smelting process in the copper smelter RTB Bor (Serbia). The influence of copper content in the matte, the temperature and the height of the slag on the content of copper in the slag was determined as Cuoxide, Cusulfide and Cutotal and was based on possible mechanisms for the loss of copper in a silicate slag from the smelting of sulfide copper concentrates. The greatest quantity of copper in the silicate slag was found in the form of matte particles, which were captured in the slag as a result of the “flotation” of SO2 gas which was formed by magnetite reduction with FeS at the slag–matte interphase boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Savic MV, Djordjevic PB, Mihajlovic IN, Zivkovic ZD (2015) Statistical modeling of copper losses in the silicate slag of the sulfide concentrate smelting process. Pol J Chem Technol 17(3):62–69. https://doi.org/10.1515/pjct-2015-0051

    Article  Google Scholar 

  2. Zivkovic Z, Mitevska N, Mihajlovic I, Nikolic D (2010) Copper losses in sulfide concentrate smelting slag are dependent on slag composition. Miner Metall Process 27(3):141–147. https://doi.org/10.1007/bf03402237

    Article  Google Scholar 

  3. Bellemans I, De Wilde E, Moelans N, Verbeken K (2017) Metal losses in pyrometallurgical operations-a review. Adv Colloid Interf Sci 255:47–63. https://doi.org/10.1016/j.cis.2017.08.001

    Article  Google Scholar 

  4. Tan P (2011) Modeling and control of copper loss in smelting slag. JOM 63(12):51–57. https://doi.org/10.1007/s11837-011-0207-y

    Article  Google Scholar 

  5. Gui W-h, Wang L-y, Yang C-h, Xie Y-f, Peng X-b (2007) Intelligent prediction model of matte grade in copper flash smelting process. Trans Nonferrous Metals Soc China 17(5):1075–1081. https://doi.org/10.1016/S1003-6326(07)60228-3

    Article  Google Scholar 

  6. Gorai B, Jana RK, Premchand (2003) Characteristics and utilisation of copper slag - a review. Resour Conserv Recycl 39(4):299–313. https://doi.org/10.1016/S0921-3449(02)00171-4

    Article  Google Scholar 

  7. Shi C, Meyer C, Behnood A (2008) Utilization of copper slag in cement and concrete. Resour Conserv Recycl 52(10):1115–1120. https://doi.org/10.1016/j.resconrec.2008.06.008

    Article  Google Scholar 

  8. Fernández-Caliani J, Ríos G, Martínez J, Jiménez F (2012) Occurrence and speciation of copper in slags obtained during the pyrometallurgical processing of chalcopyrite concentrates at the Huelva smelter (Spain). J Min Metall Sect B 48(2):161–171. https://doi.org/10.2298/jmmb111111027f

    Article  Google Scholar 

  9. Moskalyk RR, Alfantazi AM (2003) Review of copper pyrometallurgical practice: today and tomorrow. Miner Eng 16(10):893–919. https://doi.org/10.1016/j.mineng.2003.08.002

    Article  Google Scholar 

  10. Sarrafi A, Rahmati B, Hassani HR, Shirazi HHA (2004) Recovery of copper from reverberatory furnace slag by flotation. Miner Eng 17(3):457–459. https://doi.org/10.1016/j.mineng.2003.10.018

    Article  Google Scholar 

  11. Liu J-H, Gui W-H, Xie Y-F, Jiang Z-H (2013) Solving the transient cost-related optimization problem for copper flash smelting process with Legendre Pseudospectral method. Mater Trans 54(3):350–356. https://doi.org/10.2320/matertrans.M2012350

    Article  Google Scholar 

  12. Miganei L, Gock E, Achimovičová M, Koch L, Zobel H, Kähler J (2017) New residue-free processing of copper slag from smelter. J Clean Prod 164:534–542. https://doi.org/10.1016/j.jclepro.2017.06.209

    Article  Google Scholar 

  13. Pengfu T, Chuanfu Z (1998) Behaviors of accessory elements in copper pyrometallurgy. Trans Nonferrous Metals Soc China 8(1):114–119

    Google Scholar 

  14. Yannopoulos JC (1971) Control of copper losses in reverberatory slags — a literature review. Can Metall Q 10(4):291–307. https://doi.org/10.1179/000844371795102847

    Article  Google Scholar 

  15. Nagamori M (1974) Metal loss to slag: part I. sulfidic and oxidic dissolution of copper in fayalite slag from low grade matte. Metall Mater Trans B 5(3):531–538. https://doi.org/10.1007/bf02644646

    Article  Google Scholar 

  16. Mackey PJ (1982) The physical chemistry of copper smelting slags—a review. Can Metall Q 21(3):221–260. https://doi.org/10.1179/000844382795243687

    Article  MathSciNet  Google Scholar 

  17. Sridhar R, Toguri J, Simeonov S (1997) Copper losses and thermodynamic considerations in copper smelting. Metall Mater Trans B Process Metall Mater Process Sci 28(2):191–200. https://doi.org/10.1007/s11663-997-0084-5

    Article  Google Scholar 

  18. Mitevska N (2000) The influence of technological parameters and the interface phenomena on the copper losses with the slag. Ph.D. Thesis, University of Belgrade, Technical Faculty in Bor, Bor, Serbia, (in Serbian)

  19. Rosenqvist T (1983) Thermodynamics of copper smelting. Adv Sulfide Smelting 1:239–255

    Google Scholar 

  20. Matousek JW (1991) The effects of slag composition on copper losses in sulfide smelting. In: Copper COBRE. Pergamon, New York

    Google Scholar 

  21. Biswas AK, Davenport WG (2002) Extractive metallurgy of copper, 4th edn. Pergamon, Elsevier, Amsterdam

    Google Scholar 

  22. Jalkanen H, Vehviläinen J, Poijärvi J (2003) Copper in solidified copper smelter slags. Scand J Metall 32(2):65–70. https://doi.org/10.1034/j.1600-0692.2003.00536.x

    Article  Google Scholar 

  23. Imris I, Sanchez M, Achurra G (2004) Copper losses to slags obtained from the El Teniente process. Paper presented at the VII international conference on molten slags fluxes and salts. The South African Institute of Mining and Metallurgy, Cape Town

    Google Scholar 

  24. Cardona N, Coursol P, Mackey P, Parra R (2011) Physical chemistry of copper smelting slags and copper losses at the Paipote smelter, part 1–thermodynamic modelling. Can Metall Q 50(4):318–329. https://doi.org/10.1179/000844311x13112418194761

    Article  Google Scholar 

  25. Živković Ž, Mitevska N, Mihajlović I, Nikolić Đ (2009) The influence of the silicate slag composition on copper losses during smelting of the sulfide concentrates. J Min Metall Sect B 45(1):23–34. https://doi.org/10.2298/JMMB0901023Z

    Article  Google Scholar 

  26. Đorđević P, Mitevska N, Mihajlović I, Nikolić Đ, Manasijević D, Živković Ž (2012) The effect of copper content in the matte on the distribution coefficients between the slag and the matte for certain elements in the sulphide copper concentrate smelting process. J Min Metall Sect B 48(1):143–151. https://doi.org/10.2298/JMMB111115012D

    Article  Google Scholar 

  27. Minto R, Davenport W (1972) Entrapment and flotation of matte in molten slags. Can Mining Metall Bull 65(720):70–76

    Google Scholar 

  28. Zhao B, Jak E, Hayes P (1999) The effect of Al2O3 on liquidus temperatures of fayalite slags. Metall Mater Trans B 30(4):597–605

    Article  Google Scholar 

  29. Zhao B, Jak E, Hayes P (1999) The effect of MgO on liquidus temperatures of fayalite slags. Metall Mater Trans B 30(6):1017–1026

    Article  Google Scholar 

  30. Djordjevic P, Mitevska N, Mihajlovic I, Nikolic D, Zivkovic Z (2014) Effect of the slag basicity on the coefficient of distribution between copper matte and the slag for certain metals. Miner Process Extr Metall Rev 35(3):202–207. https://doi.org/10.1080/08827508.2012.738731

    Article  Google Scholar 

  31. Djordjevic P, Zivkovic Z, Mihajlovic I, Strbac N (2011) Statistical modeling of the copper losses in the reverberatory furnace slag. Metal Int 16(10):120–125

    Google Scholar 

  32. Pamučar DS, Božanić D, Ranđelović A (2017) Multi-criteria decision making: an example of sensitivity analysis. Serb J Manag 12(1):1–27. https://doi.org/10.5937/sjm12-9464

    Article  Google Scholar 

  33. Kalina J, Rensov D (2015) How to reduce dimensionality of data: robustness point of view. Serb J Manag 10(1):131–140. https://doi.org/10.5937/sjm10-6531

    Article  Google Scholar 

  34. Liu J-h, Gui W-h, Y-f X, Yang C-h (2014) Dynamic modeling of copper flash smelting process at a smelter in China. Appl Math Model 38(7–8):2206–2213. https://doi.org/10.1016/j.apm.2013.10.035

    Article  MathSciNet  Google Scholar 

  35. Mitevska N, Zivkovic Z (2002) Thermodynamics of As, Sb and Bi distribution during reverb furnace smelting. J Min Metall Sect B 38(1-2):93–102. https://doi.org/10.2298/jmmb0202093m

    Article  Google Scholar 

  36. Kaptay G (2001) Discussion of “microscale simulation of settler processes in copper matte smelting”. Metall Mater Trans B 32(3):555–557. https://doi.org/10.1007/s11663-001-0040-8

    Article  Google Scholar 

  37. Fagerlund KO, Jalkanen H (2000) Microscale simulation of settler processes in copper matte smelting. Metall Mater Trans B 31B(3):439–451. https://doi.org/10.1007/s11663-000-0150-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag Djordjevic.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zivkovic, Z., Djordjevic, P. & Mitevska, N. Contribution to the Examination of the Mechanisms of Copper Loss with the Slag in the Process of Sulfide Concentrates Smelting. Mining, Metallurgy & Exploration 37, 267–275 (2020). https://doi.org/10.1007/s42461-019-00125-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-019-00125-4

Keywords

Navigation