Skip to main content
Log in

A Review of Nickel, Copper, and Cobalt Recovery by Chelating Ion Exchange Resins from Mining Processes and Mining Tailings

  • Review Article
  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

Copper and cobalt can be found on nickel laterite ores, and cobalt can be found also on copper ores, and many contaminants such as iron, aluminum, and magnesium are associated with these ores. In hydrometallurgical process, a purification step is necessary after leaching due to the presence of these impurities. Chelating resins are more selective for some metals than others, making them more efficient than cationic resins. This overview discusses chelating resin applications to recover copper, nickel, and cobalt from mining process and mining tailings and the effect of contaminants in leach solution. Chelating resins with iminodiacetate functional group can be used for selective copper recovery, and both iminodiacetate and bis-picolylamine resins are highly selective for nickel and cobalt. Chelating resins with the same functional group can have different performances on the kinetics of loading, because of variations of structure, the density of functional group, and degree of cross-linking. This article reviews commercial chelating resins that can be applied in leach solutions with different compositions, and also possible innovations for uses of chelating resins to recover metals from mining process and mining tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gupta CK (1981) Chemical metallurgy. Principles and practice

  2. Havlik T (2001) Hydrometallurgy: principles and application, vol 61. Cambridge International Science Publishing Limited, Cambridge

    Google Scholar 

  3. Han KN (2002) Fundamentals of aqueous metallurgy, vol 1, 1st edn. Society for Mining, Metallurgy, and Exploration, Inc., Littleton

    Google Scholar 

  4. Ghorbani Y, Franzidis J, Petersen J (2015) Miner Process Extr Metall Rev 7508:1

    Google Scholar 

  5. Whittington BI, Muir D (2000) Pressure acid leaching of nickel laterites: a review. Miner Process Extr Metall Rev 21:527–599

    Google Scholar 

  6. Molchanova TV, Akimova ID, Smirnov KM, Krylova OK, Zharova EV (2017) Hydrometallurgical methods of recovery of scandium from the wastes of various technologies. Russ Metall 2017:170–174

    Google Scholar 

  7. Falagán C, Grail BM, Johnson DB (2017) New approaches for extracting and recovering metals from mine tailings. Miner Eng 106:71–78

    Google Scholar 

  8. McDonald RG, Whittington BI (2008) Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies. Hydrometallurgy 91:56–69

    Google Scholar 

  9. Jackson E (1986) Hydrometallurgical extraction and reclamation, 1st edn. Ellis Horwood Limited, Southampton

    Google Scholar 

  10. Aliprandini P, Correa M, Santanilla A, Tenório J, Espinosa DCR (2016) Precipitation of metals from synthetic laterite nickel liquor by NaOH, 8th International Seminar on Process Hydrometallurgy, Santiago, Chile

  11. Moskalyk RR, Alfantazi AM (2002) Nickel laterite processing and electrowinning practice. Miner Eng 15:593–605

    Google Scholar 

  12. Ahmed IM, El-Nadi YA, El-Hefny NE (2013) Hydrometallurgy:131, 24–132

  13. Chen L, Wu Y, Dong H, Meng M, Li C, Yan Y, Chen J (2018) An overview on membrane strategies for rare earths extraction and separation. Sep Purif Technol 197:70–85

    Google Scholar 

  14. Botelho Junior AB, Rodrigues VS, Espinosa DCR, Tenório JAS (2017) Tailing treatment of nickel mining using ion exchange process, Sixteenth International Waste Management and Landfill Symposium, S. Margherita di Pula

  15. Botelho AB Jr, Jiménez Correa MM, Espinosa DCR, Tenório JAS (2018) Braz J Chem Eng

  16. Jiménez Correa MM, Aliprandini P, Tenório JAS, Espinosa DCR (2016) Precipitation of metals from liquor obtained in nickel mining, Rewas 2016: Towards Materials Resource Sustainability, vol. 1, p. 333

  17. Chang Y, Zhai X, Li B, Fu Y (2010) Removal of iron from acidic leach liquor of lateritic nickel ore by goethite precipitate. Hydrometallurgy 101:84–87

    Google Scholar 

  18. Botelho Junior AB, Anes IA, Carvalho MA, Espinosa DCR, Tenório JAS (2018) Recovery of copper from nickel laterite leach waste by chemical reduction using sodium dithionite, Energy Technology 2018, 1st edn. The Minerals, Metals & Materials Society, Arizona, p 429

    Google Scholar 

  19. Chou Y-H, Yu J-H, Liang Y-M, Wang P-J, Li C-W, Chen S-S (2015) Recovery of Cu(II) by chemical reduction using sodium dithionite. Chemosphere 141:183–188

    Google Scholar 

  20. Geoffroy N, Demopoulos GP (2009) Reductive precipitation of elemental selenium from selenious acidic solutions using sodium dithionite. Ind Eng Chem Res 48:10240

    Google Scholar 

  21. Irwin S (2011) A comparison of the use of sodium metabisulfite and sodium dithionite for removing rust stains from paper, The Book and Paper Group Annual

  22. Chou YH, Yu JH, Liang YM, Wang PJ, Li CW, Chen SS (2015) Water Sci Technol 141:183

    Google Scholar 

  23. Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG (2011) Extractive metallurgy of nickel, cobalt and platinum-group metals. Elsevier, Oxford

    Google Scholar 

  24. Inamuddin ML (ed) (2012) Ion exchange technology I, Springer, 1st edition, vol 10. Springer, New York

    Google Scholar 

  25. Harland CE (1994) Ion exchange: theory and practice, The Royal Society of Chemistry

  26. Edebali S, Pehlivan E (2016) Evaluation of chelate and cation exchange resins to remove copper ions. Powder Technol 301:520–525

    Google Scholar 

  27. Sánchez J, Mendoza N, Rivas BL, Basáez L, Santiago-García JL (2017) J Appl Polym Sci 134:1

    Google Scholar 

  28. Wołowicz A, Hubicki Z (2012) The use of the chelating resin of a new generation Lewatit MonoPlus TP-220 with the bis-picolylamine functional groups in the removal of selected metal ions from acidic solutions. Chem Eng J 197:493–508

    Google Scholar 

  29. Zagorodni AA (2012) Ion exchange materials: properties and application, First, vol XXXIII. Elsevier, Stockholm

    Google Scholar 

  30. Zainol Z, Nicol MJ (2009) Ion-exchange equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with iminodiacetic acid chelating resin Amberlite IRC 748. Hydrometallurgy 99:175–180

    Google Scholar 

  31. Rudnicki P, Hubicki Z, Kołodyńska D (2014) Evaluation of heavy metal ions removal from acidic waste water streams. Chem Eng J 252:362–373

    Google Scholar 

  32. Hubicki Z, Kołodyńska D (2012) Selective removal of heavy metal ions from waters and waste waters using ion exchange methods. Ion exchange technologies, INTECH, p 193

  33. Kołodyńska D, Sofińska-Chmiel W, Mendyk E, Hubicki Z (2014) DOWEX M 4195 and LEWATIT®MonoPlus TP 220 in heavy metal ions removal from acidic streams. Sep Sci Technol 49:2003–2015

    Google Scholar 

  34. van Deventer J (2011) Selected ion exchange applications in the hydrometallurgical industry. Solvent Extr Ion Exch 29:695–718

    Google Scholar 

  35. Jha MK, Kumari A, Panda R, Rajesh Kumar J, Yoo K, Lee JY (2016) Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 165:2–26

    Google Scholar 

  36. Gula MJ, Totura GT, Jassin L (1995) The role of hydrometallurgy in treating nuclear waste. Jom 47:54–57

    Google Scholar 

  37. Swain B (2017) Recovery and recycling of lithium: a review. Sep Purif Technol 172:388–403

    Google Scholar 

  38. Meshram P, Pandey BD, Mankhand TR (2014) Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review. Hydrometallurgy 150:192–208

    Google Scholar 

  39. Zhao Z, Yang Y, Xiao Y, Fan Y (2012) Hydrometallurgy 125–126:115

    Google Scholar 

  40. Scarazzato T, Panossian Z, Tenório JAS, Pérez-Herranz V, Espinosa DCR (2016) J Clean Prod 168:1590

    Google Scholar 

  41. Liu Y, Naidu R (2014) Hidden values in bauxite residue (red mud): recovery of metals. Waste Manag 34:2662–2673

    Google Scholar 

  42. Mudd GM (2010) Global trends and environmental issues in nickel mining: sulfides versus laterites. Ore Geol Rev 38:9–26

    Google Scholar 

  43. Mudd GM (2009) 48th Conf. Metall, 1

  44. Mudd GM, Jowitt SM (2014) A detailed assessment of global nickel resource trends and endowments. Econ Geol 109:1813–1841

    Google Scholar 

  45. Torries TF (1995) Comparative costs of nickel sulphides and laterites. Res Policy 21:179–187

    Google Scholar 

  46. Schnebele EK (2017) Nickel, https://minerals.usgs.gov/minerals/pubs/commodity/nickel/mcs-2017-nicke.pdf

  47. Oxley A, Barcza N (2013) Hydro–pyro integration in the processing of nickel laterites. Miner Eng 54:2–13

    Google Scholar 

  48. Mohammadreza F, Mohammad N, Ziaeddin SS (2014) Int J Min Sci Technol 24:543

    Google Scholar 

  49. Norgate T, Jahanshahi S (2011) Assessing the energy and greenhouse gas footprints of nickel laterite processing. Miner Eng 24:698–707

    Google Scholar 

  50. Dalvi AD, Bacon WG, Osborne RC (2004) The past and the future of nickel laterites, PDAC 2004 International Convention

  51. Leinonen H, Lehto J (2000) Ion-exchange of nickel by iminodiacetic acid chelating resin Chelex 100. React Funct Polym 43:1–6

    Google Scholar 

  52. Stefan DS, Meghea I (2014) Mechanism of simultaneous removal of Ca2+, Ni2+, Pb2+ and Al3+ ions from aqueous solutions using Purolite® S930 ion exchange resin. Comptes Rendus Chim 17:496–502

    Google Scholar 

  53. Kuz’Min VI, Kuz’Min DV (2014) Sorption of nickel and copper from leach pulps of low-grade sulfide ores using Purolite S930 chelating resin. Hydrometallurgy 141:76–81

    Google Scholar 

  54. Zainol Z, Nicol MJ (2009) Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings. Hydrometallurgy 96:283–287

    Google Scholar 

  55. Littlejohn P, Vaughan J (2014) Selective elution of nickel and cobalt from iminodiacetic acid cation exchange resin using ammoniacal solutions. Hydrometallurgy 141:24–30

    Google Scholar 

  56. Mendes FD, Martins AH (2005) Recovery of nickel and cobalt from acid leach pulp by ion exchange using chelating resin. Miner Eng 18:945–954

    Google Scholar 

  57. Mendes FD, Martins AH (2005) Selective nickel and cobalt uptake from pressure sulfuric acid leach solutions using column resin sorption. Int J Miner Process 77:53–63

    Google Scholar 

  58. Mendes FD, Martins AH (2004) Selective sorption of nickel and cobalt from sulphate solutions using chelating resins. Int J Miner Process 74:359–371

    Google Scholar 

  59. Revathi M, Saravanan M, Chiya AB, Velan M (2012) Clean: Soil, Air, Water 40:66

    Google Scholar 

  60. Dizge N, Keskinler B, Barlas H (2009) Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin. J Hazard Mater 167:915–926

    Google Scholar 

  61. Alyüz B, Veli S (2009) Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J Hazard Mater 167:482–488

    Google Scholar 

  62. Franco PE, Veit MT, Borba CE, Gonçalves G d C, Fagundes-Klen MR, Bergamasco R, da Silva EA, Suzaki PYR (2013) Nickel(II) and zinc(II) removal using Amberlite IR-120 resin: ion exchange equilibrium and kinetics. Chem Eng J 221:426–435

    Google Scholar 

  63. Jiménez Correa MM, Aliprandini P, Silvas FPC, Tenório JAS, Dreisinger D, Espinosa DCR (2017) Nickel and copper adsorption from acidic sulfate medium by ion exchange, The Conference of Metallurgists hosting World Gold & Nickel Cobalt, Canadian Institute of Mining, Metallurgy and Petroleum

  64. Botelho AB Jr, Jiménez Correa MM, Espinosa DCR, Tenório JAS (2018) Tecnol em Metal Mater e Mineração, 10

  65. Botelho AB Jr, Jiménez Correa MM, Espinosa DCR, Tenório JAS (2017) Chemical reduction of Fe(III) in nickel lateritic wastewater to recover metals by ion exchange. Energy Technol 2017:467

    Google Scholar 

  66. A. B. Botelho Junior, Jiménez Correa MM, Espinosa DCR, Tenório JAS (2016) Redução química de Fe(III) em resíduo de mineração de níquel para recuperação de metais utilizando resinas de troca-iônica, 22o CBECiMat - Congresso Brasileiro de Engenharia e Ciência dos Materiais 06 a 10 de Novembro de 2016, Natal, RN, Brasil

  67. Li B, Liu F, Wang J, Ling C, Li L, Hou P, Li A, Bai Z (2012) Chem Eng J 195–196:31

    Google Scholar 

  68. Laatikainen M, Laatikainen K (2016) Chelating adsorption with variable stoichiometry: separation of nickel and zinc in concentrated sulfate solution. Chem Eng J 287:74–82

    Google Scholar 

  69. Deepatana A, Tang JA, Valix M (2006) Comparative study of chelating ion exchange resins for metal recovery from bioleaching of nickel laterite ores. Miner Eng 19:1280–1289

    Google Scholar 

  70. Brininstool M (2017) Commodity statistics: copper

  71. Brininstool M (2016) Copper. https://minerals.usgs.gov/minerals/pubs/commodity/copper/

  72. Pourret O, Lange B, Bonhoure J, Colinet G, Decrée S, Mahy G, Séleck M, Shutcha M, Faucon MP (2015) Appl Geochem 64:43

    Google Scholar 

  73. Northey SA, Mudd GM, Saarivuori E, Wessman-Jääskeläinen H, Haque N (2016) Water footprinting and mining: where are the limitations and opportunities? J Clean Prod 135:1098–1116

    Google Scholar 

  74. Wirth H, Kulczycka J, Hausner J, Koński M (2016) Corporate social responsibility: communication about social and environmental disclosure by large and small copper mining companies. Res Policy 49:53–60

    Google Scholar 

  75. de Solminihac H, Gonzales LE, Cerda R (2017) J Policy Model

  76. Ndilila W, Callan AC, McGregor LA, Kalin RM, Hinwood AL (2014) Environmental and toenail metals concentrations in copper mining and non mining communities in Zambia. Int J Hyg Environ Health 217:62–69

    Google Scholar 

  77. Reyes-Bozo L, Godoy-Faúndez A, Herrera-Urbina R, Higueras P, Salazar JL, Valdés-González H, Vyhmeister E, Antizar-Ladislao B (2014) Greening Chilean copper mining operations through industrial ecology strategies. J Clean Prod 84:671–679

    Google Scholar 

  78. Song X, Pettersen JB, Pedersen KB, Røberg S (2017) Comparative life cycle assessment of tailings management and energy scenarios for a copper ore mine: a case study in Northern Norway. J Clean Prod 164:892–904

    Google Scholar 

  79. Barberá L, Crespo A, Viveros P, Kristjanpoller F (2012) {RAM} analysis of mining process: a case study of a copper smelting process in the field of mining, Chile, 2nd IFAC Workshop on Advanced Maintenance Engineering

  80. Li L, Pan D, Li B, Wu Y, Wang H, Gu Y, Zuo T (2017) Patterns and challenges in the copper industry in China. Resour Conserv Recycl 127:1–7

    Google Scholar 

  81. Spuerk S, Drobe M, Lottermoser BG (2017) Evaluating resource efficiency at major copper mines. Miner Eng 107:27–33

    Google Scholar 

  82. Moreno-Leiva S, Díaz-Ferrán G, Haas J, Telsnig T, Díaz-Alvarado FA, Palma-Behnke R, Kracht W, Román R, Chudinzow D, Eltrop L (2017) Towards solar power supply for copper production in Chile: assessment of global warming potential using a life-cycle approach. J Clean Prod 164:242–249

    Google Scholar 

  83. ICSG (2016) World copper factbook 2016. http://www.icsg.org/index.php/component/jdownloads/finish/170/2202

  84. Jorjani E, Ghahreman A (2017) Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues; a review. Hydrometallurgy 171:333–343

    Google Scholar 

  85. Lane DJ, Cook NJ, Grano SR, Ehrig K (2016) Selective leaching of penalty elements from copper concentrates: a review. Miner Eng 98:110–121

    Google Scholar 

  86. Lundström M, Liipo J, Taskinen P, Aromaa J (2016) Copper precipitation during leaching of various copper sulfide concentrates with cupric chloride in acidic solutions. Hydrometallurgy 166:136–142

    Google Scholar 

  87. Lu J, Dreisinger D (2013) Copper chloride leaching from chalcopyrite and bornite concentrates containing high levels of impurities and minor elements. Hydrometallurgy 138:40–47

    Google Scholar 

  88. Lu J, Dreisinger D (2013) Copper leaching from chalcopyrite concentrate in Cu(II)/Fe(III) chloride system. Miner Eng 45:185–190

    Google Scholar 

  89. Fomchenko NV, Muravyov MI (2017) Two-step biohydrometallurgical technology for modernization of processing of sulfidic copper-zinc products. Hydrometallurgy 174:116–122

    Google Scholar 

  90. Ma A, Hadi P, Barford J, Hui CW, Mckay G (2014) Modified empty bed residence time model for copper removal. Ind Eng Chem Res 53:13773

    Google Scholar 

  91. Siu PCC, Koong LF, Saleem J, Barford J, McKay G (2015) Chin J Chem Eng 24:94

    Google Scholar 

  92. Gando-Ferreira LM, Romão IS, Quina MJ (2011) Equilibrium and kinetic studies on removal of Cu2+ and Cr3+ from aqueous solutions using a chelating resin. Chem Eng J 172:277–286

    Google Scholar 

  93. Bleotu I, Dorneanu S-A, Mureseanu M, Gilca E, Ilea P (2015) Rev Chim (Bucharest) 66:797

    Google Scholar 

  94. Fadel DA, El-Bahy SM, Abdelaziz YA (2016) Heavy metals removal using iminodiacetate chelating resin by batch and column techniques. Desalin Water Treat 57:25718

    Google Scholar 

  95. Neto IFF, Sousa CA, Brito MSCA, Futuro AM, Soares HMVM (2016) A simple and nearly-closed cycle process for recycling copper with high purity from end life printed circuit boards. Sep Purif Technol 164:19–27

    Google Scholar 

  96. Laatikainen K, Lahtinen M, Laatikainen M, Paatero E (2010) Copper removal by chelating adsorption in solution purification of hydrometallurgical zinc production. Hydrometallurgy 104:14–19

    Google Scholar 

  97. Chen CY, Chiang CL, Chen CR (2007) Removal of heavy metal ions by a chelating resin containing glycine as chelating groups. Sep Purif Technol 54:396–403

    Google Scholar 

  98. Lutfor MR, Mashitah MY (2011) Synthesis of poly(hydroxamic acid)-poly(amidoxime) chelating ligands for removal of metals from industrial wastewater. E-Journal Chem 8:1038–1043

    Google Scholar 

  99. Diogo DD, Herbst MH, Ribeiro R, Teixeira VG (2011) The role of matrix porosity in the adsorption of Cu(II) by amidoxime chelating resins: an electron paramagnetic resonance study. React Funct Polym 71:721–727

    Google Scholar 

  100. Shaaban AF, Fadel DA, Mahmoud AA, Elkomy MA, Elbahy SM, Environ J (2014) Chem Eng 2:632

    Google Scholar 

  101. El-Bahy SM, El-Bahy ZM, Environ J (2016) Chem Eng 4:276

    Google Scholar 

  102. Liebenberg CJ, Dorfling C, Bradshaw SM, Akdogan GA, Eksteen JJ (2013) J South Afr Inst Min Metall 113:389

    Google Scholar 

  103. Boland MA, Kropschot SJ (2011) Cobalt—for strength and color

  104. Wilburn DR (2012) Cobalt mineral exploration and supply from 1995 through 2013. http://purl.fdlp.gov/GPO/gpo20983

  105. Tisserant A, Pauliuk S (2016) Matching global cobalt demand under different scenarios for co-production and mining attractiveness. J Econ Struct 5:4

    Google Scholar 

  106. Mudd GM, Weng Z, Jowitt SM, Turnbull ID, Graedel TE (2013) Quantifying the recoverable resources of by-product metals: the case of cobalt. Ore Geol Rev 55:87–98

    Google Scholar 

  107. Shedd KB (2017) 2015 Minerals yearbook—cobalt. http://minerals.usgs.gov/minerals/pubs/commodity/soda_ash/myb1-2015-sodaa.pdf

  108. Shedd KB (2017) Mineral commodity summaries—cobalt. https://minerals.usgs.gov/minerals/pubs/commodity/cobalt/mcs-2017-cobal.pdf

  109. Cheyns K, Banza Lubaba Nkulu C, Ngombe LK, Asosa JN, Haufroid V, De Putter T, Nawrot T, Kimpanga CM, Numbi OL, Ilunga BK, Nemery B, Smolders E (2014) Pathways of human exposure to cobalt in Katanga, a mining area of the D.R. Congo. Sci Total Environ 490:313–321

    Google Scholar 

  110. Squadrone S, Burioli E, Monaco G, Koya MK, Prearo M, Gennero S, Dominici A, Abete MC (2016) Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (D.R. Congo). Sci Total Environ 568:679–684

    Google Scholar 

  111. Dinu MV, Dragan ES (2008) Heavy metals adsorption on some iminodiacetate chelating resins as a function of the adsorption parameters. React Funct Polym 68:1346–1354

    Google Scholar 

  112. Dragan ES, Dinu MV, Lisa G, Trochimczuk AW (2009) Study on metal complexes of chelating resins bearing iminodiacetate groups. Eur Polym J 45:2119–2130

    Google Scholar 

  113. McKevitt B, Dreisinger D (2012) Hydrometallurgy 121–124:35

    Google Scholar 

  114. Deepatana A, Valix M (2006) Recovery of nickel and cobalt from organic acid complexes: adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin. J Hazard Mater 137:925–933

    Google Scholar 

  115. Deepatana A, Valix M (2008) Comparative adsorption isotherms and modeling of nickel and cobalt citrate complexes onto chelating resins. Desalination 218:334–342

    Google Scholar 

  116. Badawy SM, Nayl AA, El Khashab RA, El-Khateeb MA (2013) J Mater Cycles Waste Manag 16:739

    Google Scholar 

  117. Littlejohn P, Vaughan J (2013) Recovery of nickel and cobalt from laterite leach tailings through resin-in-pulp scavenging and selective ammoniacal elution. Miner Eng 54:14–20

    Google Scholar 

  118. Vaughan J, Dieters C, Fu W, Byrne K (2016) Properties of Lewatit® TP272, a commercial solvent impregnated cation exchange resin for cobalt recovery. Miner Eng 88:2–8

    Google Scholar 

  119. Aliprandini P (2017) O uso da extração por solventes para tratamento de licor de lixiviação de minério limonítico de níquel, Universidade de São Paulo

  120. Shaidan NH, Eldemerdash U, Awad S (2012) J Taiwan Inst Chem Eng 43:40

    Google Scholar 

Download references

Funding

The authors received financial support from the University of Sao Paulo, the University of British Columbia, and the FAPESP/Capes grants 012/51871-9, 2016/05527-5, and 2017/06563-8, Sao Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amilton Barbosa Botelho Junior.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botelho Junior, A.B., Dreisinger, D.B. & Espinosa, D.C.R. A Review of Nickel, Copper, and Cobalt Recovery by Chelating Ion Exchange Resins from Mining Processes and Mining Tailings. Mining, Metallurgy & Exploration 36, 199–213 (2019). https://doi.org/10.1007/s42461-018-0016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-018-0016-8

Keywords

Navigation