Abstract
In this study, a theorem about the vectorization of the entangledphotons trajectories is presented, and through it, an effect equivalent to the unification of the individual localities of the entangled particles is evidenced, which will be confirmed in two scenarios: a theoretical demonstration, and four simple experiments carried out on an optical table. In this way, the existence of this possibility, in terms of entanglement, will be scientifically established when explaining the instantaneous synchronization of nonlocal outcomes as a result of local measurements from the vectorization of the entangledphotons trajectories without resorting to local hidden variables, or fasterthanlight arguments. Finally, this explanation will be completely contained within the Theory of Special Relativity, eliminating entanglement as a showdown scenario between the two main pillars of Physics: Special Relativity, and Quantum Mechanics.
Article highlights
This study provides a new and revealing approach to the nonlocality of entanglement, giving a justification for its instantaneity without resorting to fasterthanlight arguments, and thus expanding the space of possibilities of quantum communication for the creation of new and more performing protocols.
Similar content being viewed by others
Avoid common mistakes on your manuscript.
1 Introduction
During the last 100 years, there has been a great debate about entanglement [1,2,3,4], in particular, due to the instantaneous synchronization of nonlocal outcomes from local measurements of entangled particles. The debate has focused on the fact that an instantaneous and nonlocal phenomenon only seems to be possible, prima facie, by resorting to fasterthanlight (FTL) arguments [5,6,7], which contradicts the original arguments of the Theory of Special Relativity [8]. The debates between Albert Einstein and Neils Bohr on the matter are famous. On one hand, Einstein argued that such a phenomenon undermined the very foundations of the Theory of Special Relativity [8] since according to it, nothing can travel faster than light; on the other hand, he argued that it was absurd to think that reality took place exclusively from the observation and that it should take place independently of any measurement [9]. Specifically, Einstein considered the random nature of Quantum Mechanics [10,11,12], that is, its purely probabilistic basis before the observation, as inadmissible [9]. These arguments were refuted by Bohr, who thought in the opposite way to Einstein, that is, in the opinion of Bohr, the reality before the observation of the entanglement is purely probabilistic, becoming deterministic since the measurement, and only from that moment. Moreover, while Bohr did not delve into superluminal arguments to explain the behavior of entanglement from the observation of entangled particles; Albert Einstein, Boris Podolski, and Nathan Rosen [13] (EPR) considered that a theory that left in the hands of probability the behavior of a nonlocal phenomenon violates the first commandment of the Theory of Special Relativity [8] (i.e., nothing travels faster than light): at best, it could never be considered a complete theory [13]. In the second half of the twentieth century, the first efforts to elucidate this problem began to take shape, and so in 1964 [14], John Bell presented a proposal for an experimental test in the form of a theorem based on inequality, in such a way that if that inequality is not fulfilled, it automatically means that the entanglement cannot be explained by local hidden variables (LHV), and therefore it is a purely nonlocal phenomenon, thus contradicting EPR. In 1969 [15], John Clauser, Michael Horne, Abner Shimony, and Richard Holt presented an improvement to Bell's theorem based on the same criterion, that is, if the inequality they proposed does not hold, then both the locality and the LHV are completely excluded from the explanation of the entanglement. In 1982 [16, 17], Alan Aspect carried out the first two experimental verifications of Bell’s Theorem, although a great part of the scientific community questioned his experiments, considering them vitiated by loopholes. Just in 2015 [18], Ronald Hanson carried out the first experiment related to Bell’s Theorem, where he proclaimed the absence of loopholes. Notwithstanding any heated debate, the current consensus is that entanglement instantaneously synchronizes nonlocal outcomes from local measurements, i.e., it is a nonlocal phenomenon, which does not allow voluntarily sending information using these attributes, since the result of a quantum measurement is random, and it is precisely randomness which saves the Theory of Special Relativity [8]; since information cannot be sent voluntarily between two entangled particles based on local measurements of them. This argument is at the heart of the current debate about the very nature of entanglement for two reasons:

1.
Randomness saves Special Relativity [8] because man cannot voluntarily send information to two distant points by making use of the instantaneous attributes of entanglement without resorting to a violation of the speed of light as nature’s maximum speed limit. Instead, if nature does this without man’s control, then isn’t there such a violation?

2.
If Special Relativity [8] needs randomness to save it, then this does not speak very well of this theory, since it would depend on a kind of Russian roulette.
Regarding the first argument, Physics must explain an instantaneous transmission between two distant points, regardless of whether or not a man can obtain a benefit from this phenomenon, and as far as possible through concomitant actions with the preestablished theories that make it up, such as Special Relativity [8], which, and already concerning the second argument, should not need anything to save it, as it should happen with one of the most successful theories of Physics.
There have been innumerable efforts to try to explain how entanglement [1,2,3,4] works. Einstein himself resorted to an explanation of this phenomenon based on local hidden variables (LHV) [9], while Bohm did so in the 1950s based on nonlocal hidden variables (NLHV) [19]. Subsequently, other efforts were directed at bolder approaches such as superdeterminism [20], the multiverse [21], and even time retrieval [22]. Instead, in this study, we will base ourselves on a new approach, the vectorization of the entangledphotons trajectories, or space vectorization.
The outline of the paper is as follows: In Sect. 2, the space vectorization concept is introduced via a structure of Hypothesis, Thesis, and two Demonstrations, where the first one is theoretical, and the second one consists of four experimental verifications on an optical table. Section 3 presents a comparative discussion of the results obtained at the demonstrations. Finally, Sect. 4 deals with the general conclusions of this study.
2 The theorem of unified locality
From here on, the rest of the paper will be organized as a theorem, through which it will be shown that the individual localities of two entangled particles merge into a single and integrating locality that encompasses both entangled particles, i.e., arises the concept of unified locality. In this way, we will be able to overcome the preexisting notion of nonlocality [14,15,16,17,18], commonly associated with entangled particles, which leads to a headon collision between Special Relativity [8, 23, 24], and Quantum Mechanics [10,11,12].
2.1 Entangledphotons trajectories vectorization (hypothesis)
Figure 1a represents an ultraviolet (UV) laser beam incident on two beta barium borate (BBO) TypeI crystals (together, one next to the other) rotated by 90º to produce TypeII downconversion, i.e., a Bell state of type [1]:
At time t_{0}, two beams start from point C, the left beam (signal) goes to point A, while the right beam (idler) goes to point B. Both points (A and B) are hit by both beams at the same time at instant t_{m}, at which point the quantum measurement [25] is performed. Photons from both beams travel at the speed of light c, so the angle between beam \(\overline{AC}\) and the vertical blue line \(\overline{DC}\) is the same as that between beam \(\overline{BC}\) and the aforementioned vertical. Thus, the Euclidean distance \(\left {\overrightarrow {d}_{AB} } \right\) is made up of two identical halves, i.e., \(\left {\overrightarrow {d}_{AD} } \right = {{\left {\overrightarrow {d}_{AB} } \right} \mathord{\left/ {\vphantom {{\left {\overrightarrow {d}_{AB} } \right} 2}} \right. \kern0pt} 2}\) and \(\left {\overrightarrow {d}_{BD} } \right = {{\left {\overrightarrow {d}_{BA} } \right} \mathord{\left/ {\vphantom {{\left {\overrightarrow {d}_{BA} } \right} 2}} \right. \kern0pt} 2}\), that is, \(\left {\overrightarrow {d}_{AD} } \right = \left {\overrightarrow {d}_{BD} } \right\), where \(\left {\overrightarrow {d}_{AB} } \right = \left {\overrightarrow {d}_{BA} } \right\), and  •  the modulus of “•”.
Based on the aforementioned geometric relationships, we are in a position to formulate the hypothesis of the theorem.
Hypothesis
Every beam corresponding to the path of an entangled photon is vectorized.
When we say that the paths of the entangled photons are vectorized, we mean that they have a direction and magnitude, which can be measured in meters or feet. Then, returning to Fig. 1, we can observe the extraordinary similarity between the downconversion process of Fig. 1a, which takes place on an optical table, and represents the most conspicuous setting for experiments with entangled photons, with its corresponding counterpart, i.e., the lightcone of Fig. 1b, resulting from Special Relativity [8], where the trajectories of the photons are also represented in red, and which maintains a complete correspondence with experiments like the one in Fig. 1(a). However, the similarity between Figs. 1a and b is only apparent, as not all physical units involved are the same. For example, in Fig. 1a, the diagonal lines (red) (photon trajectories), the horizontal line (black), and the vertical line (blue) represent spatial dimensions. However, in Fig. 1b, the horizontal line (black) is an Euclidean distance, but the vertical line (blue) represents time, while the oblique lines (red) represent the relationship between space and time, which in this case is the speed of light, i.e., c = d/t. Figure 1b is completed as follows: (a) the horizontal circles represent isotemporal planes, in which different instances of the experiment take place, e.g., the horizontal line (black) between points A and B is the diameter of the circle corresponding to the instant t_{m}, (b) the upper part of the figure is the future light cone, (c) the lower part constitutes the past light cone, and (d) the coordinate center where the two spatial axes (green) intersect with the vertical timeline (blue) for instant t_{0} is a point in the plane known as the hypersurface of the present generated from the two spatial axes (green). In the four plots of Fig. 1, the experiment starts at t_{0} (point C) and ends at t_{m} (point D), i.e., with the quantum measurement. Both inside the upper cone (future light cone) and the lower one (past light cone) in Fig. 1b a subluminal process takes place. On the other hand, on the cones, any process is luminous, while outside the cones, all processes are superluminal, i.e., FTL [5,6,7]. Figure 1c corresponds exclusively to the upper part of Fig. 1a, that is, from point C (t_{0}) to point D (t_{m}), where the angle γ has to do with the starting angle of the photons from the BBO according to their wavelength (in this case, 810 nm). This angle occurs because both sides of the triangle, i.e., the photon's path (red) and its vertical projection (blue) are spatial dimensions. On the other hand, we do not see that angle in Fig. 1d, corresponding to a cut of the future light cone according to the space–time plane of Fig. 1b from t_{0} to t_{m}, since all the sides of both triangles have different physical units. In Figs. 1a and c, the trajectories of the entangled photons (red) in both beams (signal and idler) have direction, with a magnitude and an angle, as well as a specific speed c = d/t. Therefore, these trajectories are vectorized. Consequently, we conjecture that the vectorization of the trajectories of the entangled photons can occur due to a phenomenon of persistence or memory of the state of each photon during each instant of its trajectory, and where the set of all these states are chained in space–time constituting an apparent rigid structure (where, we must understand by rigid, a linear ray that only changes direction if the direction of the BBO changes) which is vectorized with direction and module. In other words, the compilation of the states, at each instant of their trajectories, of all the photons emitted by the BBO, gives rise to a vectorial structure with module and angle (lattice). In consequence, the vectorization of the trajectories of the entangled photons (red) implies the vectorization of the quantum channel. At this point in the analysis, it does not matter if the Geometry of the trajectory of the entangled photons is not linear on the optical table, as it happens when we use optical fibers, which can have remarkably irregular paths. This is purely symbolic since what really counts is that both paths (those of both beams: signal and idler) are identical in length, so there will always exist an equivalent linear path like the one in Fig. 1a for an irregular trajectory, as long as both beams have the same length (see Appendix A), even considering the fact that in an optical fiber the light travels at a speed of only 2/3 of the one which takes place in a vacuum. In this context, where the paths of the entangled photons are vectorized for all instants t_{0} ≤ t < t_{m}, we say that the entanglement is also vectorized until the photons arrive at points A and B, where the quantum measurement is made at instant t_{m}, and thus the collapse of the wave function occurs, all traces of vectorization disappearing, as well as the entanglement. In this way, during t_{0} ≤ t < t_{m}, the trajectories of the entangled photons (red diagonal vectors) can be decomposed into their horizontal (black) and vertical (blue) components, facilitating the development of the following section.
2.2 Null equivalent channel and unified locality (thesis)
Next, we will address the development of the thesis from two points of view to conclude this section with a rigorous definition of it.
Geometry point of view: Based on Fig. 1c, \(\forall t \in \left[ {t_{0} ,t_{m} } \right)\), in the triangle on the left, we have,
while in the triangle on the right, we have,
In the previous subsection, we saw that \(\left {\overrightarrow {d}_{AD} } \right = \left {\overrightarrow {d}_{BD} } \right\), and since we are dealing with vector magnitudes in opposite directions, it results:
We call effective distance (\(\overrightarrow {d}_{effective}\)) to the physical magnitude of Eq. (4) resulting from the sum of both equal and opposite vectors, that we can see it is null regardless of the Euclidean distance between points A and B (\(\overrightarrow {d}_{AB}\)) in every moment. Consequently, the effective time (t_{effective}) that it takes for Bob to learn of a local measurement made by Alice is:
The result of Eq. (5) implies that Bob is instantly notified of the outcome of the measurement made by Alice, while the entanglement is in effect. Then, \(\forall t/t \ge t_{m}\), the wave function collapses, the entanglement disappears, and therefore,
that is, the effective distance between A and B is simply the Euclidean distance between points A and B. Figure 2 shows the effective distance between both photons in blue dot lines, in such a way that, \(\forall t \in \left[ {t_{0} ,t_{m} } \right)\) both photons are entangled, so that the \(\overrightarrow {d}_{effective} = 0\), while for the instant t = t_{m}, the photons are mutually independent with a \(\overrightarrow {d}_{effective} = \overrightarrow {d}_{AB}\), which can be observed both in the optical table of Fig. 2a, and in a crosssection parallel to the drawing plane of the light cone of Fig. 2b.
Figure 3a shows entangled photons with a \(\overrightarrow {d}_{effective} = 0\) on the interval [t_{0}, t_{m}), such that points A and B are effectively coincident, where the qubit q[0] leaving the BBO is distributed to Alice and q[1] to Bob, however, it seems that they had never been separated, since an equivalent qubit arises as a result of the fusion of both qubits which we will call q[0–1]. It is as if both were mutually local. On the other hand, when applying a rotatable polarizer P(θ), which turns out to be a kind of weak measurement, the wave function collapses, both photons become independent, and points A and B recover their respective original locations (from the \(\overrightarrow {d}_{effective}\) point of view, since in reality points A and B never stopped being in their original positions). In the latter case, both photons are nonlocal since the \(\overrightarrow {d}_{effective} = \overrightarrow {d}_{AB}\), that is, equal to the Euclidean distance between points A and B. Figure 3b shows the \(\overrightarrow {d}_{effective}\) as a function of time, with entanglement and hence locality unified before t_{m}, and not locality and independence of both photons from t_{m}. Moreover, Fig. 3a implies that if the locality is unified before t_{m}, then there should be no difference between applying a polarizer to only one beam, let’s say Alice, or applying a polarizer to each beam at the same time. This is a direct consequence that we will demonstrate in the next two sections, however, in experiments like the one in Fig. 3a, the one that really separates the photons is the “rotatable polarizer” and not the BBO, since the separation (distribution) from the latter is effectively apparent.
Therefore, given that both beams (signal and idler) corresponding to the trajectories of two entangled particles are vectorized during the interval t_{0} ≤ t < t_{m}, then the effective distance between both particles vanishes, since if we are talking about two entangled photons where one goes to point A and the other to point B, both photons being instantly synchronized in mirror paths, then the effective (equivalent) distance between A and B is zero. This is equivalent to a contraction of the \(\overrightarrow {d}_{effective}\), or what is the same, a unification of the locality. As a direct consequence of this, any notification of a local measurement carried out on an entangled photon is instantly received by its counterpart, as Eq. (5) shows us. With the intervention of a rotatable polarizer P(θ) in any of the two beams (or in both at the same time) the unification of the locality disappears and both photons become independent as well as their localities. In this context, no FTL arguments [5,6,7] are needed for the aforementioned instant notification to take place.
Entropy point of view: Fig. 4 shows an entropic interpretation of the locality as a function of the degree of correlation between both photons. Therefore, given two subsystems (A, and B) that interact with each other in some way, their density matrices treated individually are,
while their von Neumann entropies [1] are,
where tr(•) is the trace of the square matrix (•), and log(•) is logarithm base 2 of (•). Then, the entropy of the composed system \(S_{A \cup B}\), or entropic distance δ_{AB} between them is,
The entopic distance δ_{AB} depends on the degree of correlation between both subsystems. In this analysis, we will only consider two cases: completely independent, or maximally entangled, as can be seen in Fig. 4. Besides, in the classical and quantum worlds, the correlations between the subsystems are those established by the additional information. In the case of composite quantum systems, mutual information \(S_{A \cap B}\) is introduced to quantify that additional information, allowing us to obtain the degree of correlation between both subsystems [2, 26], i.e., the entropy of the composite system \(S_{A \cap B}\) indicates that the uncertainty of a state \(\rho_{A \cup B}\) is less than the two subsystems \(S_{A}\) and \(S_{B}\) added together. Therefore, the entropic distance, δ_{AB} in terms of the mutual information \(S_{A \cap B}\), will be,
Now, if the mutual information \(S_{A \cap B}\) defines the entropic distance, then, for completely independent photons, we have,
This result is perfectly logical, because if subsystems A and B are completely independent, then they do not share any information, for example, outcomes resulting from local measurements. This leads to a maximum entropic distance δ_{AB} of 2. While for maximally entangled photons,
This is the most important case since the mutual information or information exchanged is all the information available, and accordingly, the entropic distance between A (sender) and B (receiver) becomes zero. In other words, from the point of view of entropy, A and B are stuck, that is, in the same place, as if there were no sender and receiver or distance between them, i.e., the roles die and in reality, no one transmits or receives information, giving an appearance of total locality, because why should Alice transmit to Bob what he already has?
Then, during the interval t_{0} ≤ t < t_{m}, Fig. 4a shows that both photons are entangled, and as a consequence of this the mutual information or \(S_{A \cap B}\) is maximum, therefore the total entropy of both photons, or \(S_{A \cup B}\), and the one that we call entropic distance or δ_{AB} is null, which is concomitant with the null effective distance of Figs. 2, and 3. On the other hand, in Fig. 4b we can see that since the moment t_{m}, the wave function collapses, then both photons do not have mutual information, i.e., \(S_{A \cap B} = 0\), and therefore the total entropy of both photons \(S_{A \cup B}\) or entropic distance δ_{AB} becomes maximum, which indicates a total independence between both photons. In this last case, the absence of mutual information is represented by the nonexistence of an intersection between both sets, which is equivalent to saying that both locations are independent.
In short, two entangled photons have zero effective and entropic distances, therefore they both share the same locality regardless of the Euclidean distance that separates them. This allows us to define the thesis.
Thesis: Two entangled photons share the same locality, therefore the action of a given polarizer (at an arbitrary angle θ) on one or both beams at the same time should yield the same results.
2.3 Theoretical demonstration
Figure 5a shows us the complete setup needed for this demonstration. Next, we will analyze the different instances of a state \(\left {\Omega \left( t \right)} \right\rangle\), which crosses Fig. 5a, from left to right, according to its timeline. Therefore:
At t_{0}:
At t_{1}:
where “\(\otimes\)” is Kronecker’s product [1], and
with
and (•)^{T} means transpose of (•). So if c = 0, then, Bob's rotatable polarizer is deactivated, i.e., it disappears from the path of Bob's beam. So that
Instead, if c = 1, then, Bob's rotatable polarizer is activated, i.e., it intersects the path of Bob's ray, then
Now, replacing Eqs.(16) and (17) into Eq. (15), we have
Therefore, for the case of Fig. 5b with c = 0, at t_{1}, and considering Eq. (20), we have
where
Now, for the case of Fig. 5c with c = 1, at t_{1}, and considering again Eq. (20), we have
since \(\cos \left( \theta \right)^{2} + \sin \left( \theta \right)^{2} = 1.\)
The equality between Eqs. (21) and (23) proves the theorem. This means that when the wave function collapses both in the configuration of Fig. 5b and in that of Fig. 5c, they do so in the same way. It is as if it were the same qubit.
The only way that the polarizer P(θ) applied on the qubit q[0] of Alice's beam affects the result on the qubit q[1] on Bob's beam is for q[0] and q[1] to be mutually local. It is as if it were a unified qubit q[0–1], which is concomitant with the unification of the individual localities into a single one. For this reason, applying the polarizer to one beam or both at the same time gives the same result. As we can see, the previous demonstration is totally independent of the value of the angle θ of the polarizer. However, in the following experimental demonstration on the optical table, we are forced to select some notable examples of angles such as 0º, 90º, 45º, and 135º, hoping, even with experimental errors involved, to access results similar to those of the theoretical proof.
2.4 Experimental demonstration on the optical table
Next, we proceed to experimentally demonstrate the thesis implementing the protocol of Fig. 5a on the optical table of Fig. 6. For this, we use an input laser beam or pump laser of 405 nm, with a range of power between 20 and 50 mW, which is used as the source of power. A galliumnitride (GaN) diode laser is used for two reasons: (1) it has greater stability and temperature control, and (2) its short wavelength allows us to work with efficient detectors of 810 nm. Then, the blue diode laser beam (405 nm, 50 mW) passes through a narrow bandpass filter or quartz plate of 405 nm. Subsequently, the laser beam passes through a zeroorder halfwave plate (HWP) with a phase of 22.5º, that is, which represents a Hadamard matrix [1]. This last step allows obtaining photons with a state of polarization of the diagonal type,
Then, the laser beam is directed to a solid block (5 × 5 × 3 mm^{3}) of beta barium borate (BBO) to produce a Bell state of the type \(\left {\beta_{00} } \right\rangle\) like that of Eq. (1). For this, we need two BBO TypeI crystals together, one next to the other and where the second is rotated 90º respect to the first, to produce two TypeI downconversion. The state \(\left + \right\rangle\) of Eq. (24) entering the first crystal, which generates a pair \(\left {HH} \right\rangle\), while the second crystal generates a pair \(\left {VV} \right\rangle\), in such a way that together they generate the state \(\left {\beta_{00} } \right\rangle\).
When using a 405 nm laser pump, the double TypeI downconversion produces a 6º cone at the output of the second crystal, that is, 3º for the beam known as signal (810 nm) and 3º opposite for the beam known as idler (810 nm), with a phase matching angle for TypeI downconversion of approximately 29º. In Fig. 6, the angle of both beams (signal and idler) with respect to an imaginary horizontal line was exaggerated to better appreciate the layout, and the beam path dimensions are not to scale. Moreover, several adjustment elements have not been incorporated into Fig. 6 so as not to complicate it.
Both in Alice’s beam and in Bob’s, we use rotatable polarizers of 810 nm with controllable angles through an individual waveplate controller connected to a laptop. The 810 nm calcite film rotatable polarizers are good throughout the visible spectrum and have high extinction ratios. On Bob’s side, his controller allows moving a cart that moves on rails and on which his rotatable polarizer is mounted to control its entry into the scene through a control signal c. In this way, when the control signal c = 0, corresponding to Fig. 5(b), only Alice will have a rotatable polarizer in the path of her beam, while if the control signal is c = 1, corresponding to Fig. 5c, both beams will hit their respective rotatable polarizers. Thus, it is possible to reproduce the configurations of Figs. 5b and c just by giving the control signal c the appropriate value. Two dualwavelength 405/810 nm polarizing beamsplitter (PBS) of 0.5″ × 0.5″ × 0.5″ are used. When working at 810 nm, the avalanche photodiodes (APD) have an efficiency of 60%, and we have worked with acquisition times ranging from 50 ms to 1 s, with and without an 810 nm filter before the APDs. A fourchannel timetagger device is used. Both wave plate controllers only control the angles of both rotatable polarizers, while the signal c is generated by the laptop through an Arduino circuit [27], which is not represented in Fig. 6 in order not to complicate the configuration of it.
This experiment can be reproduced by replacing the P(θ) rotatable polarizers with two possible alternatives:
where HWP means zeroorder halfwave plates of 808 nm, EOM is an electrooptical modulator, and P(0º) is an 810 nm calcite film polarizer fixed at horizontal polarization, i.e., 0º degree.
To prove the thesis, we will resort to four critical angles, i.e., 0º, 90º, 45º, and 135º, which will be replaced in Eq. (25), where θ = 0º corresponds to the horizontal polarization (H), 90º to the vertical (V), 45º to the diagonal (D), and 135º to the antidiagonal (A).
At this point, we must define the performance of the outcomes obtained with respect to the APDs, both for Alice and Bob in relation to the HV base of both PBS of Fig. 6. With these performances, we build the fidelities with which we will evaluate whether or not the thesis is verified experimentally.
Therefore, Alice’s performance with respect to the horizontal output of her PBS results from the photon counting carried out by their respective APDs (1, and 2) is then:
while for the case of the vertical output of her PBS, we have,
where n_{1} represents the result of the photon count in the APD of Alice's exit #1, and n_{2} corresponds to the photon count in the APD of Alice's exit #2. With similar criteria, on Bob's side result the following performances,
and
Being \(\eta^{T} = \left\{ {\eta_{H}^{T} ,\eta_{V}^{T} } \right\}\) the expected theoretical performance in each case, the fidelities are:
and
Except for experimental error, the results regardless of the value of the control signal c should be similar and thus verify the thesis experimentally. Therefore, based on Fig. 7, which represents the experimental reproduction performances of the theoretical values for both Alice and Bob with the rotatable polarizer only on Alice's side for θ = 0º, Fig. 7a, and for θ = 90º, Fig. 7c, and with rotatable polarizers on both sides for θ = 0º, Fig. 7b, and θ = 90º, Fig. 7d, we proceed to calculate the respective fidelities.
For c = 0, and θ = 0º, Fig. 7a, yields:
and
For c = 1, and θ = 0º, Fig. 7b:
and
For c = 0, and θ = 90º, Fig. 7c:
and
For c = 1, and θ = 90º, Fig. 7d:
and
Figure 8 shows the performances of Fig. 7 via a 3D bars representation, where in all cases it is evident which theoretical value is being induced.
Figures 7 and 8 show that θ = 0º gives rise to \(\left 0 \right\rangle\) in both outputs, while θ = 90º gives rise to \(\left 1 \right\rangle\) in both outputs, regardless of whether we use rotatable polarizers on only Alice's side or on both sides at the same time. The first case turns out to be the most interesting, in such a way that with θ = 0º we have a state \(\left 0 \right\rangle\) in both outputs, while if θ = 90º, we have a \(\left 1 \right\rangle\) in both outputs, which can be interpreted as an instantaneous induction of binary information from Alice to Bob, without the intervention of a classical disambiguation channel, as happens in the quantum teleportation protocol [28], and without resorting to FTL arguments [17, 18], but rather the unification of the locality by the action of the vectorization of the trajectories of the entangled photons.
Next, we will evaluate the fidelities for the cases of inducing diagonal and antidiagonal states.
Therefore, based on Fig. 9, which represents the experimental reproduction performances of the theoretical values for both Alice and Bob with the rotatable polarizer only on Alice's side for θ = 45º, Fig. 9a, and for θ = 135º, Fig. 9c, and with rotatable polarizers on both sides for θ = 45º, Fig. 9b, and θ = 135º, Fig. 9d, we proceed to calculate the respective fidelities.
For c = 0, and θ = 45º, corresponding to Fig. 9a:
and
For c = 1, and θ = 45º, Fig. 9b:
and
For c = 0, and θ = 135º, Fig. 9c:
and
For c = 1, and θ = 135º, Fig. 9d:
and
Figure 10 shows the performances of Fig. 9 via a 3D bars representation, where in all cases it is evident which theoretical value is being induced.
As for the case of the induction of states {H, V}, and taking into account the experimental error, similar results have been obtained regardless of the value of the control signal c, which proves the thesis experimentally. This is because in all cases fidelities exceeding 80% have been obtained when a state is induced both on Alice's side and on both sides at the same time.
3 Discussion
In the four examples of Fig. 7, we can see that given an alphabet with which to code messages to be transmitted between Alice and Bob, {H, V}, and considering that in all the examples the fidelities are never less than 80%, there is total discrimination when discerning whether the state that has been tried to be induced is a \(\left 0 \right\rangle\) or a \(\left 1 \right\rangle\) regardless of the value of the control signal c.
As we can see from the experiments carried out in Fig. 6, when Alice wishes to transmit computational basis states (CBS) to Bob, that is to say \(\left\{ {\left 0 \right\rangle ,\left 1 \right\rangle } \right\}\), he will receive states of the type: \(\left\{ {\left( {0.83 \pm 0.02} \right)\left 0 \right\rangle + \left( {0.17 \mp 0.02} \right)\left 1 \right\rangle ,\left( {0.17 \pm 0.02} \right)\left 0 \right\rangle + \left( {0.83 \mp 0.02} \right)\left 1 \right\rangle } \right\}\), respectively. This can be resolved in two ways:

1.
Bob can perform postprocessing whereby:
when he gets a \(\left( {0.83 \pm 0.02} \right)\left 0 \right\rangle + \left( {0.17 \mp 0.02} \right)\left 1 \right\rangle \to {\text{post  processing}} \to \left 0 \right\rangle\), and when he gets a \(\left( {0.17 \pm 0.02} \right)\left 0 \right\rangle + \left( {0.83 \mp 0.02} \right)\left 1 \right\rangle \to {\text{post  processing}} \to \left 1 \right\rangle\), or

2.
Alice can apply an intensity amplifier in order to recover the 3 dB drop suffered as a result of applying the rotatable polarizer. See Eq. (21). In this last case, the action of the intensity amplifier frees Bob from having to apply postprocessing, since instead of receiving the states mentioned above, he will receive:\(\left( {0.96 \pm 0.02} \right)\left 0 \right\rangle + \left( {0.04 \mp 0.02} \right)\left 1 \right\rangle\), when Alice transmits a \(\left 0 \right\rangle\), and \(\left( {0.04 \pm 0.02} \right)\left 0 \right\rangle + \left( {0.96 \mp 0.02} \right)\left 1 \right\rangle\), when Alice transmits a \(\left 1 \right\rangle\).In both cases, the fidelity goes from \(\left( {83 \pm 2} \right)\%\) to \(\left( {96 \pm 2} \right)\%\).
Another important aspect highlighted in this study is the concept of vectorization of the trajectories from which the annulment of the equivalent distance between entangled particles is directly derived, and therefore of the effective time, Eqs. (4), and (5), respectively. Moreover, as a consequence of the vectorization of the trajectories of Fig. 1 (i.e., the conjecture on which all this study revolves), which involves the distances between the entangled particles and the midpoint that separates them, the effective distance between them is canceled because those distances are of equal magnitude and in the opposite direction. See Eq. (4) and Fig. 1. Then, replacing this effective distance in Eq. (5), a null time results for the notification of a local measurement carried out, for example, in A to its counterpart in B. Therefore, Eq. (5) is a direct consequence of the cancellation of the effective distance. Besides, the theoretical demonstration of Sect. 2.3, also reflects this instantaneity, since if it is the same to put the polarizer at an angle θ only in A or in both (A and B) at the same time. This automatically tells us about the cancellation of the effective distance between both entangled particles, or what is the same in the unification of the locality. This completely coincides with what we know about entanglement, that is, its main attribute, instantaneity regardless of the distance that separates the entangled particles and that is confirmed in the experiments carried out in Sect. 2.4.
On the other hand, when we talk about null entropic distance, this is not a statement about the observers or the particles but about the channel and therefore the unification of the locality. There are many possible definitions of entropic distance; however, in this study, we use an extension of the Shannonbased information distance defined in AslmarandRoklinRajski [29,30,31]. See Eq. (10). In such a way that when the entropy of a system formed by two subsystems (A and B) is zero, i.e., \(S_{A \cup B} = \delta_{AB} = 0\), this automatically implies that both subsystems (A and B) are maximally entangled and therefore share the same information. In the context of this study, this means that there is no entropic distance between the qubits q[0] and q[1]. See Fig. 3. Therefore, zero entropic distance means zero uncertainty about what is transmitted because the channel is minimized to zero length since both entangled qubits are equivalent to a single qubit.
Figure 3 shows the instances that both particles go through in time and their relationship with the level of correlation between them, in such a way that between t_{0} and t_{m}, both particles are entangled and their locality is unified (according to trajectories vectorization), but from t_{m} both particles are completely independent and therefore nonlocal.
Finally, in Appendix B the relationship between the formalism presented in this study and Bell's.
Theorem [14] is fully developed, in which case we can observe that the unification of locality is concomitant with nonlocality, to the point that the equality of the Eqs. (21) and (23) is in a way a proof of nonlocality without inequalities, which was confirmed experimentally with the experiment in Fig. 6.
4 Conclusion
Through two demonstrations, one purely theoretical and the other experimental, it has been verified that states can be instantly induced from a transmitter to a receiver using an EPR channel without resorting to a classical disambiguation channel, as in the case of the quantum teleportation protocol [28], and without resorting to FTL arguments [17, 18], i.e., without deepening the rift between Quantum Mechanics [10,11,12] and Special Relativity [8]. Specifically, the theorem of unified locality is completely contained within the Theory of Special Relativity [8], eliminating entanglement as a showdown scenario between two of the main pillars of Physics: Special Relativity [8], and Quantum Mechanics [10,11,12]. This is because the individual locations of the entangled photons become entangled by uniting into a single equivalent locality, as shown in Fig. 3(a). This curious phenomenon is due to the vectorization of the trajectories of the entangled photons, which gives rise to the cancellation of the effective distance between the emitter and receiver during the entanglement period. Instead, the effective distance becomes equal to the Euclidean distance between the emitter and the receiver once the wave function has collapsed due to the quantum measurement [25], at which point both photons become completely independent, that is, nonlocal. Finally, the theoretical and experimental verification of the unified locality theorem will have a decisive impact on the understanding of the intrinsic mechanisms of entanglement [1, 4] for the creation of new quantum communication [32,33,34,35] and cryptography [35, 36] protocols with a strong commitment to the future quantum Internet [37,38,39,40,41,42,43,44,45,46,47,48,49,50].
Data availability
The experimental data that support the findings of this study are available in Harvard Dataverse with the identifier https://doi.org/10.7910/DVN/ABRVVS.
References
Nielsen MA, Chuang IL (2013) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK
Audretsch J (2007) Entangled Systems: New Directions in Quantum Physics. WileyVCH Verlag GmbH & Co, Weinheim
Jaeger G (2009) Entanglement, Information, and the Interpretation of Quantum Mechanics. The Frontiers Collection. SpringerVerlag, Berlin
Horodecki R, Horodecki P, Horodecki M, Horodecki K (2009) Quantum entanglement. Rev Mod Phys 81(2):865–942. https://doi.org/10.1103/RevModPhys.81.865
Ghirardi GC, Grassi R, Rimini A, Weber T (1988) Experiments of the EPR type involving CPviolation do not allow fasterthanlight communication between distant observers. Europhys Lett 6(2):95–100. https://doi.org/10.1209/02955075/6/2/001
Eberhard PH, Ross RR (1989) Quantum field theory cannot provide fasterthanlight communication. Found Phys Lett 2(2):127–149. https://doi.org/10.1007/BF00696109
Herbert N (1982) FLASH–A superluminal communicator based upon a new kind of quantum measurement. Found Phys 12(12):1171–1179. https://doi.org/10.1007/BF00729622
Einstein A, Lorentz HA, Minkowski H, Weyl H (1952) The Principle of Relativity: a collection of original memoirs on the special and general theory of relativity. Courier Dover Publications, NY
Weinbaum D (2016) Spooky action at no distance: on the individuation of quantum mechanical systems. Arxiv. https://doi.org/10.48550/arXiv.1604.06775
Phillips AC (2003) Introduction to Quantum Mechanics. Wiley, N.Y
Gasiorowicz S (2003) Quantum Physics. John Wiley & Sons, N.Y
Peres A (2002) Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, N.Y
Einstein A, Podolsky B, Rosen N (1935) Can quantummechanical description of physical reality be considered complete? Phys Rev 47(10):777–780. https://doi.org/10.1103/PhysRev.47.777
Bell J (1964) On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1(3):195–200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
Clauser JF, Horne MA, Shimony A, Holt RA (1969) Proposed experiment to test local hiddenvariable theories. Phys Rev Lett 23(15):880–884. https://doi.org/10.1103/PhysRevLett.23.880
Aspect A, Grangier P, Roger G (1982) Experimental realization of EinsteinPodolskyRosenBohm Gedankenexperiment: A new violation of Bell’s inequalities. Phys Rev Lett 49(2):91–94. https://doi.org/10.1103/PhysRevLett.49.91
Aspect A, Dalibard J, Roger G (1982) Experimental test of Bell’s inequalities using timevarying analyzers. Phys Rev Lett 49(25):1804–1807. https://doi.org/10.1103/PhysRevLett.49.1804
Hanson R (2015) Loopholefree Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526:682–686. https://doi.org/10.1038/nature15759
Bohm D (1952) A suggested interpretation of the Quantum Theory in terms of ’Hidden’ Variables, I and II”. Phys Rev 85:166–193. https://doi.org/10.1103/PhysRev.85.166
Hossenfelder S, Palmer T (2020) Rethinking superdeterminism. Front Phys 8:139. https://doi.org/10.3389/fphy.2020.00139
Kanno S (2015) Cosmological implications of quantum entanglement in the multiverse. Phys Lett B 751:316–320. https://doi.org/10.1016/j.physletb.2015.10.050
Laforest M, Baugh J, Laflamme R (2006) Timereversal formalism applied to maximal bipartite entanglement: theoretical and experimental exploration. Arxiv. https://doi.org/10.1103/PhysRevA.73.032323
Resnick R (1968) Introduction to Special Relativity. John Wiley & Sons, NY
Y. Deshko, 2022 Special Relativity: For Inquiring Minds, Springer Nature Switzerland AG
Busch P, Lahti P, Pellonpää JP, Ylinen K (2016) Quantum Measurement. Springer, NY
Mastriani M (2021) Quantum Fourier transform is the building block for creating entanglement. Sci Rep. https://doi.org/10.1038/s4159802101745x
Arduino. https://www.arduino.cc/. Accessed 5 October 2022.
Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK (1895) Teleporting an unknown quantum state via dual classical and EinsteinPodolskyRosen channels. Phys Rev Lett 1993:70. https://doi.org/10.1103/PhysRevLett.70.1895
S. M. Aslmarand, W. A. Miller, P. M. Alsing, V. S. Rana, Emergent Entanglement Geometry: ItfromBit, arxiv:1902.02391, 2019
Roklin VA (1967) Lecture on the entropy theory of measurepreserving transformations. Russ Math Surv 22:1–52. https://doi.org/10.1070/RM1967v022n05ABEH001224
Rajski C (1961) A metric space of discrete probability distributions. Inf Control 4:373. https://doi.org/10.1016/S00199958
Cariolaro G (2015) Quantum Communications: Signals and Communication Technology. Springer, AG Switzerland
Imre S, Gyongyosi L (2013) Advanced Quantum Communications: An Engineering Approach. WileyIEEE Press, NY
Benslama M, Benslama A, Aris S (2017) Quantum Communications in New Telecommunications Systems. John Wiley & Sons, Hoboken
Sergienko AV (ed) (2006) Quantum Communications and Cryptography: Optical Science and Engineering. CRC Press, Boca Raton
Kollmitzer C, Pivk M (eds) (2010) Lecture Notes in Physics 797: Applied Quantum Cryptography. Springer, Heidelberg
Caleffi M, Chandra D, Cuomo D, Hassanpour S, Cacciapuoti A (2020) The rise of the quantum internet. Computer 53(06):67–72. https://doi.org/10.1109/MC.2020.2984871
D. Chandra, S. A. Cacciapuoti, M. Caleffi, L. Hanzo, Direct Quantum Communications in the Presence of Realistic Noisy Entanglement, arxiv: 2012.11982, 2020
Cacciapuoti AS, Caleffi M, Tafuri F, Cataliotti FS, Gherardini S, Bianchi G (2020) Quantum internet: networking challenges in distributed quantum computing. IEEE Netw 34(1):137–143. https://doi.org/10.1109/MNET.001.1900092
Cacciapuoti AS, Caleffi M, Van Meter R, Hanzo L (2020) When entanglement meets classical communications: quantum teleportation for the quantum internet. IEEE Trans on Comm 68(6):3808–3833. https://doi.org/10.1109/TCOMM.2020.2978071
Caleffi M, Cacciapuoti AS (2020) Quantum switch for the quantum internet: noiseless communications through noisy channels. IEEE J Select Areas Commun 38(3):575–588. https://doi.org/10.1109/JSAC.2020.2969035
M. Caleffi, A. S. Cacciapuoti, G. Bianchi, Quantum Internet: from Communication to Distributed Computing! NANOCOM'18: Proc. 5th ACM Int. Confe. on Nanoscale Comp. & Comm., Sept. 5–7, 2018, Reykjavik, Iceland, 1–4. DOI:https://doi.org/10.1145/3233188.3233224.
Cuomo D, Caleffi M, Cacciapuoti AS (2020) Towards a distributed quantum computing ecosystem. IET Quantum Commun 1(1):3–8. https://doi.org/10.1049/ietqtc.2020.0002
K. Chakraborty, F. Rozpedeky, A. Dahlbergz, S. Wehner, Distributed Routing in a Quantum Internet, arxiv 1907.11630, 2019.
Wehner S, Elkouss D, Hanson R (2018) Quantum internet: a vision for the road ahead. Science. https://doi.org/10.1126/science.aam9288
Dür W, Lamprecht R, Heusler S (2017) Towards a quantum internet. Eur J Phys. https://doi.org/10.1088/13616404/aa6df7
Kimble HJ (2008) The quantum internet. Nature 453:1023–1030. https://doi.org/10.1038/nature07127
Gyongyosi L, Imre S (2020) entanglement accessibility measures for the quantum internet. Quant Info Proc 19:115. https://doi.org/10.1007/s111280202605y
Gyongyosi L, Imre S (2019) Entanglement access control for the quantum internet. Quant Info Proc 18:107. https://doi.org/10.1007/s1112801922265
Gyongyosi L, Imre S (2019) Opportunistic entanglement distribution for the quantum internet. Sci Rep 9:2219. https://doi.org/10.1038/s4159801938495w
J. Preskill, Lecture Notes for Ph219/CS219: Quantum Information and Computation, Chapter 4, Caltech, http://theory.caltech.edu/~preskill/ph229/notes/chap4_01.pdf, 2001.
Mermin ND (1981) Bringing home the atomic world: Quantum, mysteries for anybody. Am J Phys 49:940. https://doi.org/10.1119/1.12594
L. Maccone, A simple proof of Bell’s inequality, arxiv: 1212.5214, 2013.
Acknowledgements
M.M. thanks the staff of the Knight Foundation School of Computing and Information Sciences at Florida International University for all their help and support.
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declared that he has no conflicts of interest to this work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A
Fig. A1 see Fig. 11
Based on Fig. 11, suppose that immediately after the downconversion process, that takes place in the BBO, two fiber optic adapters are applied in such a way that the entangled photons never move through free space, but always do through fiber optic cables. Then, two blackcolored fiber optic cables (\(\overline{A^{\prime}C}\) and \(\overline{B^{\prime}C}\)), with exaggerated zigzagging in their trajectories and of equal length, transport the entangled photons, from point C to A' and from the same point C to B', in such a way that if we linearly extend both fiber optic cables reaching the respective points A and B through linear trajectories equivalent in length of red color, we will see that the distance traveled by both entangled photons is the same, i.e., \(\left {\overrightarrow {d}_{AC} } \right = \left {\overrightarrow {d}_{BC} } \right\). In other words, the black zigzagging path \(\overline{A^{\prime}C}\) is of equal Euclidean length to the red linear equivalent path \(\overline{AC}\), and the black zigzagging path \(\overline{B^{\prime}C}\) is of the same Euclidean length as the red linear equivalent path \(\overline{BC}\). However, the linear red paths between points A' and C, and B' and C have different lengths, i.e., \(\left {\overrightarrow {d}_{A^{\prime}C} } \right \ne \left {\overrightarrow {d}_{B^{\prime}C} } \right\). If we now draw a blue bisector from point C that cuts segment \(\overline{AB}\) in the middle, i.e., at point D, this generates two equal angles γ, as in Fig. 1c, such that \(\left {\overrightarrow {d}_{AD} } \right = \left {\overrightarrow {d}_{BD} } \right\). Therefore, for zigzagging fiber optic paths, the analysis in Sect. 2 is still valid, the same as for the case of mixed configurations, i.e., free space with optical fiber.
Appendix B
Next, we will describe the relationship between Bell's Theorem [14] and the formalism proposed in this study in order to explore whether both are compatible.
Then, based on Eq. (22),
and its partner in quadrature, that is,
we can compose the Bell state \(\left {\beta_{00} } \right\rangle\) of Eq. (1) in terms of the formalism used throughout this study, i.e. the qubit model of Eqs. (50) and (51),
Once the aforementioned correspondence between Bell's state and the proposed formalism has been established, we will proceed to establish the link between the formalism and Bell's Theorem. For this, we will resort to the simplest proof of Bell's inequality in the literature proposed by Preskill [51], following Mermin's suggestions [52], and conveniently exposed by Lorenzo Maccone [53]; that is, under the conditions that three arbitrary twovalued properties A, B, C satisfy counterfactual definiteness and locality, and that P(X, X) = 1 for X = A, B, C (i.e. the two objects have same properties), the following inequality among correlations holds,
namely, a Bell inequality, where the individual probabilities are:
In such a way that if any experiment linked to entanglement yields the sum of the three combined probabilities of Eq. (53) a value less than one, then it would be violating Bell's inequality, which would automatically indicate the nonlocality of the entanglement.
Therefore, and in order to prove inequality, we choose the same examples from Maccone [53] but slightly adapted to the formalism of this study. Then, taking into account Eqs. (50) to (52), we have the following triad of twovalue properties \(A(\theta = 0^{ \circ } )\), \(B\left( {{{\theta = \pi } \mathord{\left/ {\vphantom {{\theta = \pi } 3}} \right. \kern0pt} 3}} \right)\), and \(C\left( {{{\theta =  \pi } \mathord{\left/ {\vphantom {{\theta =  \pi } 3}} \right. \kern0pt} 3}} \right)\):
Then, according to the first line of Eq. (52), we have,
We are now in a position to calculate the inequality of Eq. (53), by putting \(\left {a_{0} } \right\rangle\) and \(\left {a_{1} } \right\rangle\) in terms of \(\left {b_{0} } \right\rangle\) and \(\left {b_{1} } \right\rangle\) for P(A, B), then \(\left {a_{0} } \right\rangle\) and \(\left {a_{1} } \right\rangle\) in terms of \(\left {c_{0} } \right\rangle\) and \(\left {c_{1} } \right\rangle\) for P(A, C), and \(\left {a_{0} } \right\rangle\) and \(\left {a_{1} } \right\rangle\) in terms of \(\left {b_{0} } \right\rangle\), \(\left {b_{1} } \right\rangle\), \(\left {c_{0} } \right\rangle\) and \(\left {c_{1} } \right\rangle\), simultaneously for P(B, C).
Then, if.
we can replace both into the first term of Eq. (61),
Now, if
and
we can replace both into the first term of Eq. (61),
Finally, replacing Eqs. (62), (63), (65), and (66) into the first term of Eq. (61),
For Eq. (64), the probability of obtaining zero for both properties is the square modulus of the coefficient of \(\left {a_{0} } \right\rangle \left {b_{0} } \right\rangle\), namely \(\left( {\tfrac{1}{2\sqrt 2 }} \right)^{2} = \tfrac{1}{8}\), while the probability of obtaining one for both is the square modulus of the coefficient of \(\left {a_{1} } \right\rangle \left {b_{1} } \right\rangle\), again 1/8. Hence, P(A, B) = 1/8 + 1/8 = 1/4. Analogously, we find that P(A, C) = 1/4 and that P(B, C) = 1/4. Finally, the three probabilities are replaced in Eq. (53),
That is, the Bell ‘s inequality is violated through the formlism presented in this study, which is completely concomitant with the Bell's Theorem [14].
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Mastriani, M. The theorem of unified locality. SN Appl. Sci. 5, 192 (2023). https://doi.org/10.1007/s42452023053810
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s42452023053810