Skip to main content
Log in

Application of CubeSat Technologies for Research and Exploration on the Lunar Surface

  • Original Paper
  • Published:
Advances in Astronautics Science and Technology Aims and scope Submit manuscript

Abstract

In view of ESA’s horizon goal of establishing a human presence on the Moon by 2040, the Earth’s moon is increasingly coming into the focus of research and industry. Lunar exploration can benefit from systems developed for low-Earth orbit, as the environmental conditions are overlapping. The development of the CubeSat industry in recent decades has led to a revolution in access to near-Earth space. The goal of Neurospace and its partners is to explore the similarities of both environments for a direct application of existing CubeSat technologies for lunar exploration. Using an open standard and a tiered approach for the development of lunar rovers will allow future missions to focus more on the actual use case rather than the individual development, qualification, and certification of required components. This paper introduces the HiveR rover and provides a classification of the future importance of robotic systems for lunar exploration. It also discusses, in review of past lunar missions, how such rovers differ from previous lunar rovers, and how important they can be in supporting increasingly complex missions. The similarities and differences between the low-Earth orbit and the lunar surface are outlined. Based on this, the new challenges in adapting existing CubeSat technologies for robotics on the lunar surface will be discussed and initial solutions presented. As examples of potential payloads, various experiments are presented, such as a robot arm that was developed to fit in a 1 U volume. It can be used for docking operations between individual systems or various tool handling operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and related material are available by request from the corresponding author.

References

  1. Connolly JF, et al. (2018) The moon as a stepping stone to human Mars missions. In: Proceedings of the International Astronautical Congress, IAC

  2. Mahoney R, et al. (2022) Novel design requirements for nano lunar rovers. In: 73rd International Astronautical Congress (IAC), Paris, France

  3. Mahoney R, et al. (2022) CubeR—a solution for lunar exploration. In: 73rd International Astronautical Congress (IAC), Paris

  4. Neurospace GmbH (2022) Home. [Online]. Available: https://www.neurospace.de. Accessed 10 Sept 2023

  5. International Space Exploration Coordination Group, The Global Space Exploration Roadmap. [Online]. Available: https://www.globalspaceexploration.org/wordpress/wp-content/isecg/GER_2018_small_mobile.pdf

  6. ISECG (2020) The global exploration roadmap supplement august 2020: lunar surface exploration scenario update. [Online]. Available: https://www.globalspaceexploration.org/wp-content/uploads/2020/08/GER_2020_supplement.pdf

  7. Dunbar B (2022) NASA Artemis [Online]. Available: http://www.nasa.gov/artemis-1. Accessed 15 Sept 2023

  8. German Aerospace Center (DLR) Spacecraft Operations and Astronaut Training Space operations and astronaut training portfolio: LUNA moon analog facility

  9. Hall L (2022) What is capstone? [Online]. Available: https://www.nasa.gov/smallspacecraft/capstone/. Accessed 17 Sept 2023

  10. Dovgan VG, Moisheev AA (2021) First space robotic systems (on the 50th anniversary of lunokhod 1). Sol Syst Res 55(7):772–780. https://doi.org/10.1134/S0038094621070066/FIGURES/10

    Article  Google Scholar 

  11. Williams D (2016) The apollo lunar roving vehicle [Online]. Available: https://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_lrv.html. Accessed 11 Sept 2023

  12. Costes N, Farmer J, George E (2023) Mobility performance of the lunar roving vehicle: terrestrial studies. Apollo 15 Results, vol 401. NASA

  13. Gromov V, et al. (2003) Lunokhod 2—a retrospective Glance after 30 Years. EGS-AGU-EUG Joint Assembly

  14. Wang J et al (2020) Computer vision in the teleoperation of the Yutu-2 rover. ISPRS Ann Photogram Remote Sens Spat Inform Sci 5(3):595–602. https://doi.org/10.5194/isprs-Annals-V-3-2020-595-2020

    Article  Google Scholar 

  15. Chandrayaan-3 Details. Available: https://www.isro.gov.in/Chandrayaan3_Details.html. Accessed: Sep. 12, 2023. [Online]

  16. Kosambe S (2019) Chandrayaan-2: India’s second lunar exploration mission. J Aircr Spacecr Technol. https://doi.org/10.3844/jastsp.2019.221.236

    Article  Google Scholar 

  17. Ding L et al (2022) A 2-year locomotive exploration and scientific investigation of the lunar farside by the Yutu-2 rover. Sci Robot 7(62):6660. https://doi.org/10.1126/scirobotics.abj6660

    Article  Google Scholar 

  18. Harvey B (2007) Soviet and Russian lunar exploration. https://doi.org/10.1007/978-0-387-73976-2

  19. Robinson M (2014) Trundling Across the Moon | Lunar Reconnaissance Orbiter Camera. [Online]. Available: http://lroc.sese.asu.edu/posts/774. Accessed 14 Sept 2023

  20. Xiao L et al (2015) A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission. Science (1979) 347(6227):1226–1229. https://doi.org/10.1126/SCIENCE.1259866

    Article  Google Scholar 

  21. Zuo W, Li C, Zhang Z, Zeng X, Liu Y, Xiong Y (2021) China’s lunar and planetary data system: preserve and present reliable chang’e project and tianwen-1 scientific data sets. Space Sci Rev. https://doi.org/10.1007/S11214-021-00862-3

    Article  Google Scholar 

  22. Chandrayaan-3’s Pragyan rover covers 100m distance on the moon’s surface, reports Indian news. Available: https://delhibreakings.com/chandrayaan-3s-pragyan-rover-covers-100m-distance-on-the-moons-surface-reports-indian-news/. Accessed: Sep. 12, 2023. [Online]

  23. Killian M (2020) Thermal constrained traverse planning at lunar poles. Technische Universität München

  24. Ellery A (2007) Planetary rovers—robotic exploration of the solar system, pp 56–77

  25. Ellery A (2023) Sustainable lunar exploration through self-replicating robots

  26. Dave W (2021) NASA Moon fact sheet. [Online]. Available: https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html. Accessed14 Sept 2023

  27. Petro A (2020) Surviving and operating through the lunar night. In: IEEE Aerospace Conference Proceedings, 1–6. https://doi.org/10.1109/AERO47225.2020.9172730

  28. Stoll E et al (2009) Ground verification of the feasibility of telepresent on-orbit servicing. J Field Robot 26(3):287–307. https://doi.org/10.1002/rob.20286

    Article  Google Scholar 

  29. Stoll E (2008) Ground verification of telepresence for on-orbit servicing. Technische Universität München

  30. Christian-Albrechts-Universität (2019) Lunar Lander Neutrons and Dosimetry auf Chang’E 4. [Online]. Available: https://www.physik.uni-kiel.de/de/institute/ieap/et/forschung/LND_ChangE4. Accessed 14 Sept 2023

  31. Santra S, Staudinger E, Yoshida K (2020) Radio propagation modelling for coordination of lunar micro-”. In: Proc. International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-sairas), Virtual Conference

  32. Crotts A (2014) The new moon: water, exploration, and future habitation. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139045384

    Book  Google Scholar 

  33. Space X (2021) Human spaceflight—mars and beyond—the road to making humanity multiplanetary. [Online]. Available: https://www.spacex.com/human-spaceflight/mars/. Accessed 23 Jan 2023

  34. Wheeler R (2009) Launch windows essay. [Online]. Available: https://history.nasa.gov/afj/launchwindow/lw1.html. Accessed 24 Sept 2023

  35. Ming DW (1992) Lunar sourcebook. A user’s guide to the moon. Endeavour 16(2):96. https://doi.org/10.1016/0160-9327(92)90014-g

    Article  Google Scholar 

  36. Hodges RR (1975) Formation of the lunar atmosphere. The Moon 14(1):139–157. https://doi.org/10.1007/BF00562980

    Article  Google Scholar 

  37. Johnson DE, Francis S, Carroll JM (1972) Evans, Lunar atmosphere measurements. In: Proceedings of the Lunar Science Conference

  38. Vondrak RR (1974) Creation of an artificial lunar atmosphere. Nature 248(5450):657–659. https://doi.org/10.1038/248657a0

    Article  Google Scholar 

  39. Astrobotic, Plan your mission. [Online]. Available: https://www.astrobotic.com/plan-your-mission/. Accessed 10 Jan 2023

  40. von Unwerth M, Voß A, Stapperfend S, Linke S, Stoll E (2019) Simulation of the robotic lunar prototype MIRA3D. Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV. https://doi.org/10.25967/490161

  41. Heiken GH, McKay DS, Brown RW (1974) Lunar deposits of possible pyroclastic origin. Geochim Cosmochim Acta 38(11):1703–1704. https://doi.org/10.1016/0016-7037(74)90187-2

    Article  Google Scholar 

  42. Slyuta EN (2014) Physical and mechanical properties of the lunar soil (a review). Sol Syst Res 48(5):330–353. https://doi.org/10.1134/S0038094614050050

    Article  Google Scholar 

  43. Schreiner SS, Dominguez JA, Sibille L, Hoffman JA (2016) Thermophysical property models for lunar regolith. Adv Space Res 57(5):1209–1222. https://doi.org/10.1016/j.asr.2015.12.035

    Article  Google Scholar 

  44. Gaier JR, Sechkar EA (2007) Lunar simulation in the lunar dust adhesion bell jar. In: Collection of Technical Papers—45th AIAA Aerospace Sciences Meeting, vol. 17, pp 11690–11699. https://doi.org/10.2514/6.2007-963

  45. Fox L (2021) Steigerung der Zugfestigkeit von Bauteilen aus lunarem Regolith durch Faserverstärkung. TU Braunschweig

  46. Fox L (2022) Development of a docking mechanism for rovers on the lunar surface, Master’s thesis, TU Braunschweig

  47. Linke S et al (2020) TUBS-M and TUBS-T based modular Regolith Simulant System for the support of lunar ISRU activities. Planet Space Sci 180:104747. https://doi.org/10.1016/j.pss.2019.104747

    Article  Google Scholar 

  48. Spacelab Rostock–PTS. Available: https://www.pts.space/products/spacelab-rostock/. Accessed: Sep. 12, 2023. [Online]

  49. Lunar Exploration Analysis Group (2017) Advancing science of the moon—report of the specific action team Houston, Texas

  50. Stooke PJ (2023) Exploration strategies and landing sites at the lunar south pole

  51. Billings TL, Walden B, York CL (2000) Lunar lavatube base construction. Space 2000:631–637. https://doi.org/10.1061/40479(204)76

    Article  Google Scholar 

  52. Voß A, Freund R, Harms S, Linke S, Stoll E (2018) MIRA3D - a terrestrial robotic prototype for additive layer manufacturing of lunar regolith. In: Proceedings of the International Astronautical Congress, IAC, vol. 2018

  53. Zhang S et al (2020) First measurements of the radiation dose on the lunar surface. Sci Adv. https://doi.org/10.1126/sciadv.aaz1334

    Article  Google Scholar 

  54. Berger T et al (2017) DOSIS and DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016. J Sp Weather Sp Clim. https://doi.org/10.1051/swsc/2017005

    Article  Google Scholar 

  55. Schwadron NA et al (2018) Update on the worsening particle radiation environment observed by CRaTER and implications for future human deep-space exploration. Space Weather 16(3):289–303. https://doi.org/10.1002/2017SW001803

    Article  Google Scholar 

  56. Why space radiation matters. NASA. https://www.nasa.gov/analogs/nsrl/why-space-radiation-matters. Accessed on 28/04/2021

  57. Ferguson D (1993) Interactions between spacecraft and their environments. arc.aiaa.org. https://doi.org/10.2514/6.1993-705.

  58. James BF, Norton OW, Alexander MB (1994) The natural space environment: effects on spacecraft

  59. Pelton JN, Madry S (eds) (2020) Handbook of Small Satellites. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-20707-6

  60. Cal Poly—San Luis Obispo CA, CubeSat Design Specification (1U–12U)REV 14.1CP-CDS-R14.1. 2020.

  61. Kulu E (2022) [Online]. Available: https://www.nanosats.eu/. Accessed 17 Jul 2022

  62. Clark P (2022) Lunar ice cube. [Online]. Available: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2022-156C. Accessed 12 Sept 2022

  63. Tallaksen AP, et al. Cuberovers for lunar exploration. Annual Meeting of the Lunar Exploration Analysis Group, vol 2041

  64. von Unwerth M (2023) Roverplattform für die Entwicklung von Experimenten zur Nutzung des Training Ground Moon (submitted)

  65. Schilling K, Jungius C (1996) Mobile robots for planetary exploration. Control Eng Pract 4(4):513–524. https://doi.org/10.1016/0967-0661(96)00034-2

    Article  Google Scholar 

  66. Almaeeni S, Els S, Hamad A (2021) The Rashid rover: to guide the way for the next generation lunar missions and solar system exploration. EGU Gen Assem 2021:1. https://doi.org/10.5194/EGUSPHERE-EGU21-14732

    Article  Google Scholar 

  67. Padma TV (2020) India reveals third lunar mission. Phys World 33(2):12. https://doi.org/10.1088/2058-7058/33/2/23

    Article  Google Scholar 

  68. Amato J, Anderson J, Carlone T, Fagan M, Padir AT, Stafford K (2012) Oryx 2.0 : a planetary exploration mobility platform

  69. Wickboldt H (2023) Design and development of a chassis and drive-system for the cubesat-based lunar exploration robot HiveR,” Master Thesis, TU Braunschweig, Braunschweig

  70. Thangavelautham J, Robinson MS, Taits A, McKinney T, Amidan S, Polak A (2017) Flying, hopping pit-bots for cave and lava tube exploration on the moon and mars. arXiv preprint http://arxiv.org/abs/1701.07799

  71. Sutoh M, Yusa J, Ito T, Nagatani K, Yoshida K (2012) Traveling performance evaluation of planetary rovers on loose soil. J Field Robot 29(4):648–662. https://doi.org/10.1002/rob.21405

    Article  Google Scholar 

  72. Nolte L (2022) Experimental validation of adaptable rover wheels. Technische Universität Braunschweig

  73. Skonieczny K, Moreland SJ, Wettergreen DS (2012) A grouser spacing equation for determining appropriate geometry of planetary rover wheels. IEEE Int Conf Intell Robots Syst. https://doi.org/10.1109/IROS.2012.6386203

    Article  Google Scholar 

  74. Ding L, Gao HB, Deng ZQ, Tao JG (2010) Wheel slip-sinkage and its prediction model of lunar rover. J Central South Univ Technol (Engl Ed) 17(1):129–135. https://doi.org/10.1007/s11771-010-0021-7

    Article  Google Scholar 

  75. Bugga RV, Brandon EJ (2020) Energy storage for the next generation of robotic space exploration. Electrochem Soc Interface 29(1):59–63. https://doi.org/10.1149/2.F08201IF

    Article  Google Scholar 

  76. Mazur JE et al (2011) New measurements of total ionizing dose in the lunar environment. Space Weather. https://doi.org/10.1029/2010SW000641

    Article  Google Scholar 

  77. Maurer RH et al (2017) Radiation-induced single-event effects on the van allen probes spacecraft. IEEE Trans Nucl Sci 64(11):2782–2793. https://doi.org/10.1109/TNS.2017.2754878

    Article  Google Scholar 

  78. Gomez Toro D (2014) Temporal filtering with soft error detection and correction technique for radiation hardening based on a c-element and BICS. In: Université de Bretagne Occidentale, Accessed: Sep. 13, 2023. [Online]. Available: https://www.researchgate.net/publication/272826408_Temporal_Filtering_with_Soft_Error_Detection_and_Correction_Technique_for_Radiation_Hardening_Based_on_a_C-element_and_BICS

  79. IEEE SA—IEEE 802.11ac-2013

  80. Nokia (2023) LTE on the Moon matters for networks on Earth. [Online]. Available: https://www.nokia.com/networks/insights/network-on-the-moon/

  81. Mišeikis J (2017) Introduction to robot operating system. In: Course INF3480, University of Oslo

  82. Space ROS. Accessed: Sep. 11, 2023. [Online]. Available: https://space.ros.org/

  83. Maxwell S, Cooper B, Hartman F, Wright J, Yen J (2004) the design and architecture of the rover sequencing and visualization program (RSVP) 91109: 1–10. https://doi.org/10.2514/6.2004-621-417

  84. Saeed N, Elzanaty A, Almorad H, Dahrouj H, Al-Naffouri TY, Alouini MS (2020) CubeSat communications: recent advances and future challenges. IEEE Commun Surv Tutor 22(3):1839–1862. https://doi.org/10.1109/COMST.2020.2990499

    Article  Google Scholar 

  85. Expanding the Capabilities of Lunar Collaborative Rovers with a Compact Robotic Arm. Manuscript submitted for publication

  86. Pino P, Salmeri A, Hugo A, Hume S (2020) Waste management for lunar resources activities: Towards a circular lunar economy. Proc Int Astronaut Cong IAC. https://doi.org/10.1089/SPACE.2021.0012/ASSET/IMAGES/LARGE/SPACE.2021.0012_FIGURE1.JPEG

    Article  Google Scholar 

  87. Downing P, Baxter MA, McCullough ED (2005) Developing a sustainable lunar economy: Expanding the moon base beyond exploration. Collect Tech Pap Sp Explor Conf Contin Voyage Discov 1:527–535. https://doi.org/10.2514/6.2005-2551

    Article  Google Scholar 

  88. Csank J, Thomas GL, Granger M, Gardner B (2023) Powering the moon: from artemis technology demonstrations to a lunar economy.

  89. Dorigo M, Theraulaz G, Trianni V (2020) Reflections on the future of swarm robotics. Sci Robot 5(49):4385. https://doi.org/10.1126/scirobotics.abe4385

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the collaborators of the Chair of Space Technology, TU Berlin and the Institute of Space Systems, TU Braunschweig, especially Aditya Thakur and Heiko Wickboldt. The authors would also like to thank the entire Neurospace team, especially Karsten Pfeiffer, Nash Benton, Georgia von Grünberg, and Thia Steindorff for careful proofreading, many valuable suggestions, and many effective discussions. Furthermore, they express their gratitude to Johannes Rojahn for his support in the prototype development, Dr. Michael Schlüter for his support and expertise in the field of space electronics, Thomas Kern for his inspiring ideas, and the team of Celestial Space Technologies GmbH and PTS Spacelab Rostock.

Funding

This study was funded by NEUROSPACE GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian von Unwerth.

Ethics declarations

Conflict of Interest

The following conflicts of interest are declared: Maximilian von Unwerth, Lennart Fox, Max Manthey, Roberth Mahoney, Igor Kolek, and Irene Selvanathan are employed by NEUROSPACE GmbH.

Ethical approval

This study did not require formal ethical review by an ethics committee as it did not involve human or animal participants and was based solely on the analysis of publicly available or pre-approved data.

Informed consent

No direct participants were involved in this research; therefore, no informed consent was required and all data analysed came from sources that did not require or already had consent.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Unwerth, M., Fox, L., Manthey, M. et al. Application of CubeSat Technologies for Research and Exploration on the Lunar Surface. Adv. Astronaut. Sci. Technol. 6, 57–72 (2023). https://doi.org/10.1007/s42423-023-00144-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42423-023-00144-w

Keywords

Navigation