Skip to main content
Log in

Composite Acoustic Metasurfaces Based on Coiled-Up Space

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The low-frequency noise radiated by ships has a significant impact on marine animals; however, traditional ship sound-absorbing materials are not optimal for low-frequency noise control. Therefore, an acoustic metasurface suitable for low-frequency noise control is devised using a spatial folding structure, which is composed of folded channels and perforated structural units.

Methods

Numerical methods are used to investigate the acoustic characteristics and absorption mechanism of the metasurface, and the impact of common structural factors on the acoustic performance of the metasurface is studied. An experimental model is produced with 3D printing technology, and the structure's absorption coefficient is examined.

Results

A composite acoustic metasurface is designed by coupling multiple cells, and the designed metasurface structure achieves continuous broadband sound absorption in the range of 125–200 Hz. The structure exhibits subwavelength absorption characteristics and has an average absorption coefficient of 0.886 in the target frequency range, with a thickness of 1/27 of the wavelength.

Conclusion

Folded channels extend the propagation path of acoustic waves, lead to lower absorption frequencies, and the coupled multicell design broadens the absorption bandwidth. The proposed coupled multicell folded low-frequency acoustic metasurface structure has excellent sound absorption performance and provides new ideas for the design of marine low-frequency broadband acoustic absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Slabbekoorn H, Bouton N, van Opzeeland I et al (2010) A noisy spring: the impact of globally rising underwater sound levels on fish[J]. Trends Ecol Evol 25(7):419–427

    Article  Google Scholar 

  2. Arenas JP, Crocker MJ (2010) Recent trends in porous sound-absorbing materials [J]. Sound Vibrat 44(7):12–17

    Google Scholar 

  3. Guan D, Wu JH, Wu JL et al (2015) Acoustic performance of aluminum foams with semiopen cells[J]. Appl Acoust 87:103–108

    Article  Google Scholar 

  4. Cummer SA, Christensen J, Alu A (2016) Controlling sound with acoustic metamaterials[J]. Nat Rev Mater 1(3):16001

    Article  Google Scholar 

  5. Ji GS, Huber J (2022) Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials-A review [J]. Appl Mater Today 26:101260

    Article  Google Scholar 

  6. Yang Z, Mei J, Yang M et al (2008) Membrane-type acoustic metamaterial with negative dynamic mass[J]. Phys Rev Lett 101(20):204301

    Article  Google Scholar 

  7. Fang N, Xi DJ, Xu JY et al (2006) Ultrasonic metamaterials with negative modulus[J]. Nat Mater 5(6):452–456

    Article  Google Scholar 

  8. Xie YB, Popa B, Zigoneanu L et al (2013) Measurement of a broadband negative index with space-coiling acoustic metamaterials[J]. Phys Rev Lett 110(17):175501

    Article  Google Scholar 

  9. Ma GC, Sheng P (2016) Acoustic metamaterials: from local resonances to broad horizons[J]. Sci Adv 2(2):e1501595

    Article  Google Scholar 

  10. Liu ZY, Zhang XX, Mao YW et al (2000) Locally resonant sonic materials[J]. Science 289(5485):1734–1736

    Article  Google Scholar 

  11. Fan HY, Xia BZ (2020) Higher-order topological states in a three-dimensional acoustic metamaterial[J]. Chin Sci Bull 65(15):1411–1419

    Article  Google Scholar 

  12. Chen AL, Wang YS, Wang YF et al (2022) Design of acoustic/elastic phase gradient metasurfaces: principles, functional elements, tunability, and coding[J]. Appl Mech Rev 74(2):020801

    Article  Google Scholar 

  13. Assouar B, Liang B, Wu Y et al (2018) Acoustic metasurfaces[J]. Nat Rev Mater 3(12):460–472

    Article  Google Scholar 

  14. Ma GC, Yang M, Xiao SW et al (2014) Acoustic metasurface with hybrid resonances[J]. Nat Mater 13(9):873–878

    Article  Google Scholar 

  15. Zhao X, Cai L, Yu DL et al (2017) A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator[J]. AIP Adv 7(6):065211

    Article  Google Scholar 

  16. Huang SB, Fang XS, Wang X et al (2018) Acoustic perfect absorbers via spiral metasurfaces with embedded apertures[J]. Appl Phys Lett 113(23):233501

    Article  Google Scholar 

  17. Li Y, Assouar BM (2016) Acoustic metasurface-based perfect absorber with deep subwavelength thickness[J]. Appl Phys Lett 108(6):063502

    Article  Google Scholar 

  18. Donda K, Zhu YF, Fan SW et al (2019) Extreme low-frequency ultrathin acoustic absorbing metasurface[J]. Appl Phys Lett 115(17):173506

    Article  Google Scholar 

  19. Chen CR, Du ZB, Hu GK et al (2017) A low-frequency sound absorbing material with subwavelength thickness[J]. Appl Phys Lett 110(22):221903

    Article  Google Scholar 

  20. Zhang C, Hu XH (2016) Three-dimensional single-port labyrinthine acoustic metamaterial: perfect absorption with large bandwidth and tunability [J]. Phys Rev Appl 6(6):064025

    Article  Google Scholar 

  21. Yang M, Chen SY, Fu C et al (2017) Optimal sound-absorbing structures[J]. Mater Horiz 4:673–680

    Article  Google Scholar 

  22. Wu F, Zhang X, Ju ZG et al (2022) Ultra-broadband sound absorbing materials based on periodic gradient impedance matching[J]. Front Mater 9:909666

    Article  Google Scholar 

  23. Kumar S, Lee HP (2020) Labyrinthine acoustic metastructures enabling broadband sound absorption and ventilation[J]. Appl Phys Lett 116(13):134103

    Article  Google Scholar 

  24. Liu HX, Wu JH, Ma FuY (2021) Dynamic tunable acoustic metasurface with continuously perfect sound absorption[J]. J Phys D Appl Phys 54(36):365105

    Article  Google Scholar 

  25. Watanabe K, Fujita M, Tsuruta K (2020) Design of non-circular membranes metasurfaces for broadband sound absorption[J]. Jpn J Appl Phys 59:06

    Article  Google Scholar 

  26. Takasugi S, Watanabe K, Misawa M et al (2021) Low-frequency sound absorbing metasurface using multilayer split resonators[J]. Jpn J Appl Phys 60:01

    Article  Google Scholar 

  27. Gamrat G, Favre-Marinet M, Le Person S et al (2008) An experimental study and modelling of roughness effects on laminar flow in microchannels[J]. J Fluid Mech 594:399–423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Cui, H., Xu, D. et al. Composite Acoustic Metasurfaces Based on Coiled-Up Space. J. Vib. Eng. Technol. 12, 3321–3334 (2024). https://doi.org/10.1007/s42417-023-01046-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-01046-9

Keywords

Navigation