Skip to main content
Log in

Ultra-Low-Frequency Broadband Sound Absorption Characteristics of an Acoustic Metasurface with Pie-Sliced Unit Cells

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, an acoustic metasurface composed of pie-sliced resonator segments is proposed and its attenuation characteristics in ultra-low-frequency regime are examined using analytical, numerical, and experimental means. This metasurface absorber is systematically designed and realized with inhomogeneous unit cells in the shape of sliced pie to accomplish ultra-low-frequency (<100 Hz) noise cancellation. Firstly, a sound absorber with four unit cells having deep sub-wavelength thickness (\(\lambda \)/39) is fabricated and it exhibited a sound wave mitigation of more than 80% throughout the low-frequency range of 212–276 Hz. For enhancing the broadband absorption in the ultra-low-frequency regime, an acoustic absorber with eight pie-sliced unit cells is designed, realized and tested. Thereafter, a compact absorber with very-low vertical (\(\lambda /34\)) and lateral (\(\lambda /52\)) dimensions is considered and it accomplished more than 85% sound absorption in the ultra-low-frequency domain of 66–100 Hz. It is further demonstrated that, by tailoring the geometrical features such as cavity depth, resonator diameter, neck length, sector angle and number of unit cells of the metastructure, the bandwidth and frequency of the absorption peak can be modified as per the requirement. Owing to the compactness, ease of production and high absorption capacity over a wide band in the ultra-low-frequency regime, the introduced acoustic metasurface is a potential candidate for noise control applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tyagi, V.; Kumar, K.; Jain, V.K.: A study of the spectral characteristics of traffic noise attenuation by vegetation belts in Delhi. Appl. Acoust. 67(9), 926–935 (2006)

    Google Scholar 

  2. Ekici, I.; Bougdah, H.: A review of research on environmental noise barriers. Build. Acoust. 10(4), 289–323 (2003)

    Google Scholar 

  3. Tang, X.; Yan, X.: Acoustic energy absorption properties of fibrous materials: a review. Compos. Part A: Appl. Sci. Manuf. 101, 360–380 (2017)

    Google Scholar 

  4. Cao, L.; Fu, Q.; Si, Y.; Ding, B.; Yu, J.: Porous materials for sound absorption. Compos. Commun. 10, 25–35 (2018)

    Google Scholar 

  5. Ingard, U.: On the theory and design of acoustic resonators. J. Acoust. Soc. Am. 25(6), 1037–61 (1953)

    Google Scholar 

  6. Prydz, R.; Wirt, L.; Kuntz, H.; Pope, L.: Transmission loss of a multilayer panel with internal tuned Helmholtz resonators. J. Acoust. Soc. Am. 87(4), 1597–1602 (1990)

    Google Scholar 

  7. Kim, S.; Kim, Y.H.; Jang, J.H.: A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array. J. Acoust. Soc. Am. 119(4), 1933–1936 (2006)

    Google Scholar 

  8. Mahesh, K.; Mini, R.S.: Investigation on the acoustic performance of multiple Helmholtz resonator configurations. Acoust. Aust. 49(2), 355–369 (2021)

    Google Scholar 

  9. Huang, S.; Fang, X.; Wang, X.; Assouar, B.; Cheng, Q.; Li, Y.: Acoustic perfect absorbers via Helmholtz resonators with embedded apertures. J. Acoust. Soc. Am. 145(1), 254–262 (2019)

    Google Scholar 

  10. Zhu, J.; Qu, Y.; Gao, H.; Meng, G.: Nonlinear sound absorption of Helmholtz resonators with serrated necks under high-amplitude sound wave excitation. J. Sound Vib. 537, 117197 (2022)

    Google Scholar 

  11. Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P.: Acoustic metasurface with hybrid resonances. Nat. Mater. 13(9), 873–878 (2014)

    Google Scholar 

  12. Mei, J.; Ma, G.; Yang, M.; Yang, Z.; Wen, W.; Sheng, P.: Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3(1), 1–7 (2012)

    Google Scholar 

  13. Sampaio, L.Y.; Cerântola, P.C.; de Oliveira, L.P.: Lightweight decorated membranes as an aesthetic solution for sound insulation panels. J. Sound Vib. 532, 116971 (2022)

    Google Scholar 

  14. Maa, D.Y.: Microperforated-panel wideband absorbers. Noise Control Eng. J. 29(3), 77 (1987)

    Google Scholar 

  15. Maa, D.Y.: Potential of microperforated panel absorber. J. Acoust. Soc. Am. 104(5), 2861–2866 (1998)

    Google Scholar 

  16. Rafique, F.; Wu, J.H.; Waqas, M.; Lushuai, X.; Ma, F.: A thin double-layer multiple parallel-arranged inhomogeneous microperforated panel absorber for wideband low-frequency sound absorption. J. Braz. Soc. Mech. Sci. Eng. 44(1), 1–18 (2022)

    Google Scholar 

  17. Tan, W.-H.; Ripin, Z.M.: Optimization of double-layered micro-perforated panels with vibro-acoustic effect. J. Braz. Soc. Mech. Sci. Eng. 38(3), 745–760 (2016)

    Google Scholar 

  18. Li, X.; Wu, Q.; Kang, L.; Liu, B.: Design of multiple parallel-arranged perforated panel absorbers for low frequency sound absorption. Materials 12(13), 2099 (2019)

    Google Scholar 

  19. Mi, Y.; Yu, X.: Attenuation of low-frequency sound in u-shaped duct with membrane coupled acoustic resonator: modeling and analysis. J. Sound Vib. 489, 115679 (2020)

    Google Scholar 

  20. Sakagami, K.; Nagayama, Y.; Morimoto, M.; Yairi, M.: Pilot study on wideband sound absorber obtained by combination of two different microperforated panel (MPP) absorbers. Acoust. Sci. Technol. 30(2), 154–156 (2009)

    Google Scholar 

  21. Wang, C.; Cheng, L.; Pan, J.; Yu, G.: Sound absorption of a micro-perforated panel backed by an irregular-shaped cavity. J. Acoust. Soc. Am. 127(1), 238–246 (2010)

    Google Scholar 

  22. Li, D.; Chang, D.; Liu, B.: Enhanced low-to mid-frequency sound absorption using parallel-arranged perforated plates with extended tubes and porous material. Appl. Acoust. 127, 316–323 (2017)

    Google Scholar 

  23. Shen, X.; Bai, P.; Yang, X.; Zhang, X.; To, S.: Low frequency sound absorption by optimal combination structure of porous metal and microperforated panel. Appl. Sci. 9(7), 1507 (2019)

    Google Scholar 

  24. Boulvert, J.; Humbert, T.; Romero-García, V.; Gabard, G.; Fotsing, E.R.; Ross, A.; Mardjono, J.; Groby, J.-P.: Perfect, broadband, and sub-wavelength absorption with asymmetric absorbers: realization for duct acoustics with 3d printed porous resonators. J. Sound Vib. 523, 116687 (2022)

    Google Scholar 

  25. Guo, J.; Fang, Y.; Jiang, Z.; Zhang, X.: Acoustic characterizations of Helmholtz resonators with extended necks and their checkerboard combination for sound absorption. J. Phys. D: Appl. Phys. 53(50), 505504 (2020)

    Google Scholar 

  26. Gai, X.L.; Xing, T.; Li, X.H.; Zhang, B.; Wang, W.J.: Sound absorption of microperforated panel mounted with Helmholtz resonators. Appl. Acoust. 114, 260–265 (2016)

    Google Scholar 

  27. Park, S.H.: Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption. J. Sound Vib. 332(20), 4895–4911 (2013)

    Google Scholar 

  28. Langfeldt, F.; Hoppen, H.; Gleine, W.: Broadband low-frequency sound transmission loss improvement of double walls with Helmholtz resonators. J. Sound Vib. 476, 115309 (2020)

    Google Scholar 

  29. Guo, J.; Zhang, X.; Fang, Y.; Jiang, Z.: Wideband low-frequency sound absorption by inhomogeneous multi-layer resonators with extended necks. Compos. Struct. 260, 113538 (2021)

    Google Scholar 

  30. Liu, X.; Yu, C.; Xin, F.: Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption. Compos. Struct. 263, 113647 (2021)

    Google Scholar 

  31. Mahesh, K.; Mini, R.S.: Theoretical investigation on the acoustic performance of Helmholtz resonator integrated microperforated panel absorber. Appl. Acoust. 178, 108012 (2021)

    Google Scholar 

  32. Mahesh, K.; Ranjith, S.K.; Mini, R.S.: Inverse design of a Helmholtz resonator based low-frequency acoustic absorber using deep neural network. J. Appl. Phys. 129(17), 174901 (2021)

    Google Scholar 

  33. Assouar, B.; Liang, B.; Wu, Y.; Li, Y.; Cheng, J.C.; Jing, Y.: Acoustic metasurfaces. Nat. Rev. Mater. 3(12), 460–472 (2018)

    Google Scholar 

  34. Liu, H.; Wu, J.H.; Ma, F.: High-efficiency sound absorption by a nested and ventilated metasurface based on multi-slit synergetic resonance. J. Phys. D: Appl. Phys. 54(20), 205304 (2021)

    Google Scholar 

  35. Liu, H.; Wu, J.H.; Ma, F.: Dynamic tunable acoustic metasurface with continuously perfect sound absorption. J. Phys. D: Appl. Phys. 54(36), 365105 (2021)

    Google Scholar 

  36. Liu, L.; Chang, H.; Zhang, C.; Hu, X.: Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth. Appl. Phys. Lett. 111(8), 083503 (2017)

    Google Scholar 

  37. Xu, Z.; Qin, L.; Xu, W.; Fang, S.; Wang, J.: Design approach of perforated labyrinth-based acoustic metasurface for selective acoustic levitation manipulation. Sci. Rep. 11(1), 1–11 (2021)

    Google Scholar 

  38. Li, M.; Wu, J.H.; Yuan, X.Y.: Metasurface zero-impedance matching mechanism for aerodynamic noise reduction. J. Sound Vib. 536, 117147 (2022)

    Google Scholar 

  39. Zhu, Y.; Assouar, B.: Multifunctional acoustic metasurface based on an array of Helmholtz resonators. Phys. Rev. B 99(17), 174109 (2019)

    Google Scholar 

  40. Gong, K.; Wang, X.; Ouyang, H.; Mo, J.: Tuneable gradient Helmholtz-resonator-based acoustic metasurface for acoustic focusing. J. Phys. D: Appl. Phys. 52(38), 385303 (2019)

    Google Scholar 

  41. Mahesh, K.; Ranjith, S.K.; Mini, R.S.: Inverse design of a Helmholtz resonator-based acoustic metasurface for low-frequency sound absorption using deep neural network. In: Euronoise 2021, pp. 1369–1377 (2021)

  42. Liu, C.R.; Wu, J.H.; Yang, Z.; Ma, F.: Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance. Compos. Struct. 246, 112366 (2020)

    Google Scholar 

  43. Yang, M.; Chen, S.; Fu, C.; Sheng, P.: Optimal sound-absorbing structures. Mater. Horiz. 4(4), 673–680 (2017)

    Google Scholar 

  44. Li, Y.; Assouar, B.M.: Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108(6), 063502 (2016)

    Google Scholar 

  45. Han, Y.; Wang, X.; Xie, G.; Tang, X.; Chen, T.: Low-frequency sound-absorbing metasurface with a channel of nonuniform cross section. J. Appl. Phys. 127(6), 064902 (2020)

    Google Scholar 

  46. Guo, J.; Zhang, X.; Fang, Y.; Jiang, Z.: A compact low-frequency sound-absorbing metasurface constructed by resonator with embedded spiral neck. Appl. Phys. Lett. 117(22), 221902 (2020)

  47. Liu, Y.; Ren, S.; Sun, W.; Lei, Y.; Wang, H.; Zeng, X.: Broadband low-frequency sound absorbing metastructures based on impedance matching coiled-up cavity. Appl. Phys. Lett. 119(10), 101901 (2021)

    Google Scholar 

  48. Ji, J.; Li, D.; Li, Y.; Jing, Y.: Low-frequency broadband acoustic metasurface absorbing panels. Front. Mech. Eng. 6, 94 (2020)

    Google Scholar 

  49. Donda, K.; Zhu, Y.; Fan, S.-W.; Cao, L.; Li, Y.; Assouar, B.: Extreme low-frequency ultrathin acoustic absorbing metasurface. Appl. Phys. Lett. 115(17), 173506 (2019)

    Google Scholar 

  50. Zhang, X.; Qu, Z.; Wang, H.: Engineering acoustic metamaterials for sound absorption: from uniform to gradient structures. Iscience 23(5), 101110 (2020)

    Google Scholar 

  51. Stinson, M.R.: The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acousti. Soc. Am. 89(2), 550–558 (1991)

    Google Scholar 

  52. Huang, S.; Zhou, E.; Huang, Z.; Lei, P.; Zhou, Z.; Li, Y.: Broadband sound attenuation by metaliner under grazing flow. Appl. Phys. Lett. 118(6), 063504 (2021)

    Google Scholar 

  53. Duan, M.; Yu, C.; Xu, Z.; Xin, F.; Lu, T.J.: Acoustic impedance regulation of Helmholtz resonators for perfect sound absorption via roughened embedded necks. Appl. Phys. Lett. 117(15), 151904 (2020)

    Google Scholar 

  54. Duan, M.; Yu, C.; He, W.; Xin, F.; Lu, T.J.: Perfect sound absorption of Helmholtz resonators with embedded channels in petal shape. J. Appl. Phys. 130(13), 135102 (2021)

    Google Scholar 

  55. Dong, H.-W.; Zhao, S.-D.; Oudich, M.; Shen, C.; Zhang, C.; Cheng, L.; Wang, Y.-S.; Fang, D.: Reflective metasurfaces with multiple elastic mode conversions for broadband underwater sound absorption. Phys. Rev. Appl. 17(4), 044013 (2022)

    Google Scholar 

  56. ISO 10534-2:1998(E), Determination of sound absorption coefficient and impedance in impedance tubes (1998)

  57. ASTM E1050-12, Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system (2012)

  58. Romero-García, V.; Theocharis, G.; Richoux, O.; Pagneux, V.: Use of complex frequency plane to design broadband and sub-wavelength absorbers. J. Acoust. Soc. Am. 139(6), 3395–3403 (2016)

    Google Scholar 

  59. Carbajo, J.; Ramis, J.; Godinho, L.; Amado-Mendes, P.; Alba, J.: A finite element model of perforated panel absorbers including viscothermal effects. Appl. Acoust. 90, 1–8 (2015)

    Google Scholar 

Download references

Acknowledgements

One of the authors (K. Mahesh) gratefully acknowledges the research sponsorship under the AICTE Doctoral Fellowship (Government of India) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Mini.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, K., Anoop, P.P., Damodaran, P. et al. Ultra-Low-Frequency Broadband Sound Absorption Characteristics of an Acoustic Metasurface with Pie-Sliced Unit Cells. Arab J Sci Eng 48, 12247–12257 (2023). https://doi.org/10.1007/s13369-023-07734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07734-8

Keywords

Navigation