Skip to main content
Log in

Size-Dependent Vibration of Porous Bishop Nanorod with Arbitrary Boundary Conditions and Nonlocal Elasticity Effects

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

This study investigates the size-dependent free axial vibration of a nanorod made of porous material. In this context, nonlocal elasticity theory for size dependence and Bishop rod theory are used in the study. The porous nanorod is considered in arbitrary boundary conditions and for this purpose, it is modeled with elastic springs at both ends. A method based on the combination of Fourier sine series and Stokes’ transform is presented to realize the solution. Thanks to the presented approach, an eigenvalue problem is established to find the frequencies of a porous Bishop nanorods in general boundary conditions. Finally, the axial vibration frequencies of the porous Bishop nanorod based on the nonlocal elasticity theory are obtained depending on various parameters and the effects of these parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article (and/or) its supplementary. All data generated or analyzed during this study are included in this published article.

References

  1. Patra JK, Das G, Fraceto LF, Campos EVR, Rodrigez-Torres MDP, Acosta-Torres LS et al (2018) Nano based drug delivery systems: recent developments and future prospects. NanoBiotechnology 16(1):1–33. https://doi.org/10.1186/S12951-018-0392-8

    Article  Google Scholar 

  2. Li J, De Ávila BEF, Gao W, Zhang L, Wang J (2017) Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci Robot 2(4):1–9. https://doi.org/10.1126/SCIROBOTICS.AAM6431

    Article  Google Scholar 

  3. Bhushan B (ed) (2017) Springer handbook of nanotechnology, 4th edn. Springer, Berlin

    Google Scholar 

  4. Zhu Y (ed) (2020) Micro and nano machined electrometers. Springer, Singapore

    Google Scholar 

  5. Demir C, Civalek O (2017) On the analysis of microbeams. Int J Eng Sci 121:14–33. https://doi.org/10.1016/j.ijengsci.2017.08.016

    Article  MathSciNet  MATH  Google Scholar 

  6. Numanoğlu HM, Akgöz B, Civalek O (2018) On dynamic analysis of nanorods. Int J Eng Sci 130:33–50. https://doi.org/10.1016/j.ijengsci.2018.05.001

    Article  Google Scholar 

  7. Zhang N, Jiao B, Ye Y, Kong Y, Du X, Liu R, Cong B, Yu L, Jia S, Jia K (2022) Embedded cooling method with configurability and replaceability for multi-chip electronic devices. Energy Convers Manag 253:115124. https://doi.org/10.1016/j.enconman.2021.115124

    Article  Google Scholar 

  8. Gao N, Zhang Z, Deng J, Guo X, Cheng B, Hou H (2022) Acoustic metamaterials for noise reduction: a review. Adv Mater Technol. https://doi.org/10.1002/admt.202100698

    Article  Google Scholar 

  9. Altenbach H, Öchsner A (eds) (2020) Encyclopedia of continuum mechanics. Springer, Berlin

    MATH  Google Scholar 

  10. Harik VM (2002) Mechanics of carbon nanotubes: applicability of the continuum-beam models. Comput Mater Sci 24(3):328–342. https://doi.org/10.1016/S0927-0256(01)00255-5

    Article  Google Scholar 

  11. Manolis GD, Dineva PS, Rangelov T, Sfyris D (2021) Mechanical models and numerical simulations in nanomechanics: a review across the scales. Eng Anal Bound Elem 128:149–170. https://doi.org/10.1016/J.ENGANABOUND.2021.04.004

    Article  MATH  Google Scholar 

  12. Sánchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejón P (1999) Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys Rev B 59(19):12678. https://doi.org/10.1103/PhysRevB.59.12678

    Article  Google Scholar 

  13. Prathab B, Subramanian V, Aminabhavi TM (2007) Molecular dynamics simulations to investigate polymer–polymer and polymer–metal oxide interactions. Polymer 48(1):409–416. https://doi.org/10.1016/J.POLYMER.2006.11.014

    Article  Google Scholar 

  14. Panin VE, Surikova NS, Smirnova AS, Pochivalov YI (2018) Mesoscopic structural states in plastically deformed nanostructured metal materials. Phys Mesomech 21(5):396–400. https://doi.org/10.1134/S102995991805003X

    Article  Google Scholar 

  15. Xia C, Xu W, Nie G (2021) Dynamic quasi-continuum model for plate-type nano-materials and analysis of fundamental frequency. Appl Math Mech 42(1):85–94. https://doi.org/10.1007/S10483-021-2688-8

    Article  MathSciNet  MATH  Google Scholar 

  16. Budarapu PR, Zhuang X, Rabczuk T, Bordas SPA (2019) Multiscale modeling of material failure: theory and computational methods. Adv Appl Mech 52:1–103. https://doi.org/10.1016/BS.AAMS.2019.04.002

    Article  Google Scholar 

  17. Tadmor EB, Miller RE (2011) Modeling materials: continuum, atomistic and multiscale techniques. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  18. Wang J, Duan HL, Huang ZP, Karihaloo BL (2006) A scaling law for properties of nano-structured materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 462:1355–1363. https://doi.org/10.1098/rspa.2005.1637

    Article  MATH  Google Scholar 

  19. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975. https://doi.org/10.1126/SCIENCE.277.5334.1971

    Article  Google Scholar 

  20. Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4(7):525–529. https://doi.org/10.1038/nmat1403

    Article  Google Scholar 

  21. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487. https://doi.org/10.1016/0956-7151(94)90502-9

    Article  Google Scholar 

  22. Toupin R (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414. https://doi.org/10.1007/BF00253945

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743. https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  24. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78. https://doi.org/10.1007/BF00248490

    Article  MathSciNet  MATH  Google Scholar 

  25. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438. https://doi.org/10.1016/0020-7683(65)90006-5

    Article  Google Scholar 

  26. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313. https://doi.org/10.1016/J.JMPS.2015.02.001

    Article  MathSciNet  MATH  Google Scholar 

  27. Gurtin ME, Ian MA (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323. https://doi.org/10.1007/BF00261375

    Article  MathSciNet  MATH  Google Scholar 

  28. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209. https://doi.org/10.1016/S0022-5096(99)00029-0

    Article  MathSciNet  MATH  Google Scholar 

  29. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710. https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  30. Eringen AC (1987) Theory of nonlocal elasticity and some applications. Res Mech 21(4):313–342. https://doi.org/10.21236/ada145201

    Article  Google Scholar 

  31. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  32. Barretta R, Ali Faghidian S, de Sciarra FM, Pinnola FP (2021) Timoshenko nonlocal strain gradient nanobeams: variational consistency, exact solutions and carbon nanotube Young moduli. Mech Adv Mater Struct 28(15):1523–1536. https://doi.org/10.1080/15376494.2019.1683660

    Article  Google Scholar 

  33. Arefi M, Zenkour AM (2016) Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory. Mater Res Express 3(11):115704. https://doi.org/10.1088/2053-1591/3/11/115704

    Article  Google Scholar 

  34. Barretta R, Faghidian SA, de Sciarra F (2019) Aifantis versus Lam strain gradient models of Bishop elastic rods. Acta Mech 230(8):2799–2812. https://doi.org/10.1007/s00707-019-02431-w

    Article  MathSciNet  MATH  Google Scholar 

  35. Barretta R, de Sciarra FM (2018) Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams. Int J Eng Sci 130:187–198. https://doi.org/10.1016/j.ijengsci.2018.05.009

    Article  MathSciNet  MATH  Google Scholar 

  36. Lian L, Li Z (2022) Dynamic and frequency responses of the FG nanopipe using deep neural network and nonlocal strain/stress gradient theory. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2050438

    Article  Google Scholar 

  37. Liu Z, Wu S, Jin S, Liu Q, Ji S, Lu S, Cheng L (2022) Investigating pose representations and motion contexts modeling for 3D motion prediction. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/tpami.2021.3139918

    Article  Google Scholar 

  38. Heidari M, Tadi Beni Y, Homaei H (2013) Estimation of static pull-in instability voltage of geometrically nonlinear Euler-Bernoulli microbeam based on modified couple stress theory by artificial neural network model. Adv Artif Neural Syst. https://doi.org/10.1155/2013/741896

    Article  Google Scholar 

  39. Wang S, Guo H, Zhang S, Barton D, Brooks P (2022) Analysis and prediction of double-carriage train wheel wear based on SIMPACK and neural networks. Adv Mech Eng 14(3):16878132221078492. https://doi.org/10.1177/16878132221078491

    Article  Google Scholar 

  40. Roudbari MA, Jorshari TD, Lü C, Ansari R, Kouzani AZ, Amabili M (2022) A review of size-dependent continuum mechanics models for micro- and nano-structures. Thin-Walled Struct 170:108562. https://doi.org/10.1016/j.tws.2021.108562

    Article  Google Scholar 

  41. Yayli MÖ (2011) Stability analysis of a gradient elastic beam using finite element method. Int J Phys Sci 6(12):2844–2851. https://doi.org/10.5897/ıjps11.361

    Article  Google Scholar 

  42. Akgöz B, Civalek O (2014) Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J Vib Control 20(4):606–616. https://doi.org/10.1177/1077546312463752

    Article  MathSciNet  Google Scholar 

  43. Yayli MÖ (2018) Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory. Micro Nano Lett 13(5):595–599. https://doi.org/10.1049/mnl.2017.0751

    Article  Google Scholar 

  44. Numanoğlu HM, Civalek Ö (2019) On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM. Int J Mech Sci 161:105076. https://doi.org/10.1016/j.ijmecsci.2019.105076

    Article  Google Scholar 

  45. Civalek O, Uzun B, Yaylı MO, Akgöz B (2020) Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur Phys J Plus 135:381. https://doi.org/10.1140/epjp/s13360-020-00385-w

    Article  Google Scholar 

  46. Civalek Ö, Numanoğlu HM (2020) Nonlocal finite element analysis for axial vibration of embedded love–bishop nanorods. Int J Mech Sci 188:105939. https://doi.org/10.1016/j.ijmecsci.2020.105939

    Article  Google Scholar 

  47. Civalek Ö, Uzun B, Yaylı MÖ (2020) Stability analysis of nanobeams placed in electromagnetic field using a finite element method. Arab J Geosci 13(21):1–9. https://doi.org/10.1007/s12517-020-06188-8

    Article  Google Scholar 

  48. Uzun B, Kafkas U, Yaylı MÖ (2021) Free vibration analysis of nanotube based sensors including rotary inertia based on the Rayleigh beam and modified couple stress theories. Microsyst Technol 27(5):1913–1923. https://doi.org/10.1007/s00542-020-04961-z

    Article  Google Scholar 

  49. Akbas SD, Ersoy H, Akgöz B, Civalek O (2021) Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz method. Mathematics 9:1048. https://doi.org/10.3390/math9091048

    Article  Google Scholar 

  50. Tuna M, Kırca M, Trovalusci P (2019) Deformation of atomic models and their equivalent continuum counterparts using Eringen’s two-phase local/nonlocal model. Mech Res Commun 97:26–32. https://doi.org/10.1016/j.mechrescom.2019.04.004

    Article  Google Scholar 

  51. Barretta R, Faghidian SA, de Sciarra F (2020) A consistent variational formulation of Bishop nonlocal rods. Continuum Mech Thermodyn 32(5):1311–1323. https://doi.org/10.1007/s00161-019-00843-6

    Article  MathSciNet  Google Scholar 

  52. Güçlü G, Artan R (2020) Large elastic deflections of bars based on nonlocal elasticity. ZAMM J Appl Math Mech/Zeitschrift für Angew Math und Mech 100(4):e201900108. https://doi.org/10.1002/zamm.201900108

    Article  MathSciNet  Google Scholar 

  53. Reddy JN (2010) Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int J Eng Sci 48(11):1507–1518. https://doi.org/10.1016/J.IJENGSCI.2010.09.020

    Article  MathSciNet  MATH  Google Scholar 

  54. Pham QH, Tran TT, Tran VK, Nguyen PC, Nguyen-Thoi T, Zenkour AM (2021) Bending and hygro-thermo-mechanical vibration analysis of a functionally graded porous sandwich nanoshell resting on elastic foundation. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2021.1968549

    Article  Google Scholar 

  55. Civalek Ö, Uzun B, Yaylı MÖ (2020) Frequency, bending and buckling loads of nanobeams with different cross sections. Adv Nano Res 9(2):91–104. https://doi.org/10.12989/anr.2020.9.2.091

    Article  Google Scholar 

  56. Arefi M, Mohammad-Rezaei Bidgoli E, Dimitri R, Bacciocchi M, Tornabene F (2019) Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets. Compos Part B Eng 166:1–12. https://doi.org/10.1016/j.compositesb.2018.11.092

    Article  Google Scholar 

  57. Hamed MA, Sadoun AM, Eltaher MA (2019) Effects of porosity models on static behavior of size dependent functionally graded beam. Struct Eng Mech 71(1):89–98. https://doi.org/10.12989/sem.2019.71.1.089

    Article  Google Scholar 

  58. de Sciarra FM (2008) Variational formulations and a consistent finite-element procedure for a class of nonlocal elastic continua. Int J Solids Struct 45(14):4184–4202. https://doi.org/10.1016/j.ijsolstr.2008.03.003

    Article  MATH  Google Scholar 

  59. Daghigh H, Daghigh V, Milani A, Tannant D, Lacy TE, Reddy JN (2020) Nonlocal bending and buckling of agglomerated CNT-reinforced composite nanoplates. Compos Part B Eng 183:107716. https://doi.org/10.1016/j.compositesb.2019.107716

    Article  Google Scholar 

  60. Soltani M, Atoufi F, Mohri F, Dimitri R, Tornabene F (2021) Nonlocal elasticity theory for lateral stability analysis of tapered thin-walled nanobeams with axially varying materials. Thin-Walled Struct 159:107268. https://doi.org/10.1016/j.tws.2020.107268

    Article  Google Scholar 

  61. Li YD, Bao R, Chen W (2018) Buckling of a piezoelectric nanobeam with interfacial imperfection and van der Waals force: is nonlocal effect really always dominant? Compos Struct 194:357–364. https://doi.org/10.1016/j.compstruct.2018.04.031

    Article  Google Scholar 

  62. Arefi M, Amabili M (2021) A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory. Compos Struct 257:113100. https://doi.org/10.1016/j.compstruct.2020.113100

    Article  Google Scholar 

  63. Murmu T, Pradhan SC (2009) Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Phys E Low-dimensional Syst Nanostruct 41(7):1232–1239. https://doi.org/10.1016/J.PHYSE.2009.02.004

    Article  Google Scholar 

  64. Uzun B, Kafkas U, Yaylı MÖ (2020) Axial dynamic analysis of a Bishop nanorod with arbitrary boundary conditions. ZAMM J. Appl. Math. Mech./Zeitschrift für Angew Math und Mech 100(12):e202000039. https://doi.org/10.1002/ZAMM.202000039

    Article  MathSciNet  Google Scholar 

  65. Lim CW, Islam MZ, Zhang G (2015) A nonlocal finite element method for torsional statics and dynamics of circular nanostructures. Int J Mech Sci 94–95:232–243. https://doi.org/10.1016/J.IJMECSCI.2015.03.002

    Article  Google Scholar 

  66. Farajpour A, Shahidi AR, Mohammadi M, Mahzoon M (2012) Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics. Compos Struct 94(5):1605–1615. https://doi.org/10.1016/J.COMPSTRUCT.2011.12.032

    Article  Google Scholar 

  67. Kolahchi R, Zarei MS, Hajmohammad MH, Naddaf OA (2017) Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods. Thin-Walled Struct 113:162–169. https://doi.org/10.1016/J.TWS.2017.01.016

    Article  Google Scholar 

  68. Najafzadeh M, Adeli MM, Zarezadeh E, Hadi A (2020) Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1733602

    Article  Google Scholar 

  69. Wang J, Zhou W, Huang Y, Lyu C, Chen W, Zhu W (2018) Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control. Appl Math Mech 39(8):1059–1070. https://doi.org/10.1007/s10483-018-2360-6

    Article  MathSciNet  MATH  Google Scholar 

  70. Eltaher MA, Khater ME, Emam SA (2016) A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl Math Model 40(5–6):4109–4128. https://doi.org/10.1016/J.APM.2015.11.026

    Article  MathSciNet  MATH  Google Scholar 

  71. Wang YQ, Liang C (2019) Wave propagation characteristics in nanoporous metal foam nanobeams. Results Phys 12:287–297. https://doi.org/10.1016/J.RINP.2018.11.080

    Article  Google Scholar 

  72. Arefi M (2016) Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage. Appl Math Mech 37(3):289–302. https://doi.org/10.1007/s10483-016-2039-6

    Article  MathSciNet  MATH  Google Scholar 

  73. Romano G, Barretta R, Diaco M, de Sciarra FM (2017) Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci 121:151–156. https://doi.org/10.1016/j.ijmecsci.2016.10.036

    Article  Google Scholar 

  74. Uzun B, Yaylı MÖ (2020) A solution method for longitudinal vibrations of functionally graded nanorods. Int J Eng Appl Sci 12(2):78–87. https://doi.org/10.24107/ijeas.782419

    Article  Google Scholar 

  75. Uzun B, Yaylı MÖ (2020) Nonlocal vibration analysis of Ti-6Al-4V/ZrO2 functionally graded nanobeam on elastic matrix. Arab J Geosci 13(4):1–10. https://doi.org/10.1007/s12517-020-5168-4

    Article  Google Scholar 

  76. Berghouti H, Bedia EA, Benkhedda A, Tounsi A (2019) Vibration analysis of nonlocal porous nanobeams made of functionally graded material. Adv Nano Res 7:351–364. https://doi.org/10.12989/anr.2019.7.5.351

    Article  Google Scholar 

  77. Shafiei N, Mirjavadi SS, MohaselAfshari B, Rabby S, Kazemi M (2017) Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Comput Methods Appl Mech Eng 322:615–632. https://doi.org/10.1016/J.CMA.2017.05.007

    Article  MathSciNet  MATH  Google Scholar 

  78. Al-Maliki AF, Faleh NM, Alasadi AA (2019) Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities. Struct Monit Maint 6(2):147–159. https://doi.org/10.12989/smm.2019.6.2.147

    Article  Google Scholar 

  79. Ehyaei J, Akbarshahi A, Shafiei N (2017) Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam. Adv Nano Res 5(2):141–169. https://doi.org/10.12989/anr.2017.5.2.141

    Article  Google Scholar 

  80. Ghandourah EE, Abdraboh AM (2020) Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models. Steel Compos Struct 36(3):293–305. https://doi.org/10.12989/SCS.2020.36.3.293

    Article  Google Scholar 

  81. Rahmani A, Faroughi S, Friswell MI (2020) The vibration of two-dimensional imperfect functionally graded (2D-FG) porous rotating nanobeams based on general nonlocal theory. Mech Syst Signal Process 144:106854. https://doi.org/10.1016/J.YMSSP.2020.106854

    Article  Google Scholar 

  82. Rastehkenari SF, Ghadiri M (2021) Nonlinear random vibrations of functionally graded porous nanobeams using equivalent linearization method. Appl Math Model 89:1847–1859. https://doi.org/10.1016/J.APM.2020.08.049

    Article  MathSciNet  MATH  Google Scholar 

  83. Hadji L, Avcar M (2021) Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory. Adv Nano Res 10(3):281–293. https://doi.org/10.12989/ANR.2021.10.3.281

    Article  Google Scholar 

  84. Alasadi AA, Ahmed RA, Faleh NM (2019) Analyzing nonlinear vibrations of metal foam nanobeams with symmetric and non-symmetric porosities. Adv Aircr Spacecr Sci 6(4):273–282. https://doi.org/10.12989/aas.2019.6.4.273

    Article  Google Scholar 

  85. Jalaei M, Civalek O (2019) On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int J Eng Sci 143:14–32. https://doi.org/10.1016/j.ijengsci.2019.06.013

    Article  MathSciNet  MATH  Google Scholar 

  86. Karličić DZ, Ayed S, Flaieh E (2019) Nonlocal axial vibration of the multiple Bishop nanorod system. Math Mech Solids 24(6):1668–1691. https://doi.org/10.1177/1081286518766577

    Article  MathSciNet  MATH  Google Scholar 

  87. Reddy JN (2002) Energy principles and variational methods in applied mechanics, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Büşra Uzun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzun, B., Kafkas, U., Deliktaş, B. et al. Size-Dependent Vibration of Porous Bishop Nanorod with Arbitrary Boundary Conditions and Nonlocal Elasticity Effects. J. Vib. Eng. Technol. 11, 809–826 (2023). https://doi.org/10.1007/s42417-022-00610-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00610-z

Keywords

Navigation