Skip to main content
Log in

Torsional and axial vibration of restrained saturated nanorods via strain gradient elasticity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Size-dependent torsional and longitudinal free vibrations of restrained saturated porous nanorods are studied by a higher-order elasticity theory. The strain gradient elasticity model is used in this study able to overcome inconsistencies of classical elasticity model. The presented higher-order model leads to well-posed boundary value problem for arbitrary value of the small size parameter. Two elastic springs in torsional and axial directions are attached to saturated porous nanorods at two boundary points. Angular rotation and axial deflection functions based on the strain gradient elasticity model are represented by two Fourier sine series. The difference of this proposed solution is that it does not impose a limitation on the support conditions and allows the frequencies to be obtained with a single solution. Two coefficient matrices including torsional or axial effects are obtained by using Stokes’ transformation and non-classical boundary conditions. Free vibration frequencies of saturated nanorods are calculated by an effective eigen-value solution strategy. It is shown clearly that elastic spring coefficients, small-scale parameter and saturation a notable impact on the dynamic response of nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. Mech. Phys. Solids 41, 1825–1857 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Gholipour, A., Ghayesh, M.H.: Nonlinear coupled mechanics of functionally graded nanobeams. Int. J. Eng. Sci. 150, 103221 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Ghayesh, M.H.: Nonlinear dynamics of multilayered microplates. J. Comput. Nonlinear Dyn. 13 (2018)

  4. Ghayesh, M.H.: Mechanics of tapered AFG shear-deformable microbeams. Microsyst. Technol. 24, 1743–1754 (2018)

    MathSciNet  Google Scholar 

  5. Ghayesh, M.H.: Nonlinear size-dependent behaviour of single-walled carbon nanotubes. Appl. Phys. A 117, 1393–1399 (2014)

    Google Scholar 

  6. Ansari, R., Gholami, R., Sahmani, S.: Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83, 1439–1449 (2013)

    MATH  Google Scholar 

  7. Akgoz, B., Civalek, O.: Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronaut. 119, 1–12 (2016)

    Google Scholar 

  8. Akgoz, B., Civalek, O.: A size-dependent shear deformation beam model based on the strain gradient elasticity theory. Int. J. Eng. Sci. 70, 1–14 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Akgoz, B., Civalek, O.: Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int. J. Eng. Sci. 85, 90–104 (2014)

    Google Scholar 

  10. Aydogdu, M.: Axial vibration of the nanorods with the nonlocal continuum rod model. Phys. E Low Dimens. Syst. Nanostruct. 41, 861–864 (2009)

    Google Scholar 

  11. Barretta, R., Canadija, M., de Sciarra, F.M.: A higher-order Eringen model for Bernoulli–Euler nanobeams. Arch. Appl. Mech. 87, 483–495 (2015)

    MATH  Google Scholar 

  12. Kounadis, A.N., Mallis, J., Sbarounis, A.: Postbuckling analysis of columns resting on an elastic foundation. Arch. Appl. Mech. 75, 395–404 (2006)

    MATH  Google Scholar 

  13. Uzun, B., Yayl, M.: A solution method for longitudinal vibrations of functionally graded nanorods. Int. J. Eng. Appl. Sci. 12, 78–87 (2020)

    Google Scholar 

  14. Uzun, B., Yayl, M.: Nonlocal vibration analysis of \(\text{ Ti }-6\text{ Al }-4\text{ V }/\text{ZrO}_{2}\) functionally graded nanobeam on elastic matrix. Arab. J. Geosci. 13, 1–10 (2020)

    Google Scholar 

  15. Uzun, B., Civalek, Ö., Yayl, M.Ö. : Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions. Mech. Based Des. Struct. Mach., pp. 1–20 (2020)

  16. Numanoglu, H.M., Akgöz, B., Civalek, O.: On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018)

    Google Scholar 

  17. Numanoglu, H.M., Ersoy, H., Akgz, B., Civalek, O.: A new eigenvalue problem solver for thermomechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math. Methods Appl. Sci. (2021)

  18. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Google Scholar 

  19. Fatahi-Vajari, A., Imam, A.: Axial vibration of single-walled carbon nanotubes using doublet mechanics. Indian J. Phys. 90, 447–455 (2016)

    MATH  Google Scholar 

  20. Murmu, T., Adhikari, S.: Nonlocal vibration of carbon nanotubes with attached buckyballs at tip. Mech. Res. Commun. 38, 62–67 (2011)

    MATH  Google Scholar 

  21. Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro and nano-structures. Phys. Lett. A 363, 236–242 (2007)

    Google Scholar 

  22. Wang, Q., Varadan, V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics, Institute Of Physics Publishing Smart Mater. Struct 15, 659–666 (2006)

    Google Scholar 

  23. Gibson, R.F., Ayorinde, E.O., Wen, Y.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 1–28 (2007)

    Google Scholar 

  24. Fernandes, R., El-Borgi, S., Mousavi, S.M., Reddy, J.N., Mechmoum, A.: Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium. Physica E 16, 1386–9477 (2016)

    Google Scholar 

  25. Li, C.: A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries. Compos. Struct. 118, 607–621 (2014)

    Google Scholar 

  26. Yoon, J., Ru, C.Q., Mioduchowski, A.: Vibration of an embedded multiwall carbon nanotube. Compos. Sci. Technol. 63, 1533–1542 (2003)

    Google Scholar 

  27. Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L.: Non-classical Timoshenko beam element based on the strain gradient elasticity theory. Finite Elem. Anal. Des. 79, 22–39 (2014)

    MathSciNet  Google Scholar 

  28. Duan, W.H., Wang, C.M., Zhang, Y.Y.: Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101, 024305 (2007)

    Google Scholar 

  29. Civalek, O., Uzun, B., Yaylı, M.O., Akgöz, B.: Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus 135, 381 (2020)

    Google Scholar 

  30. Ebrahimi, F., Barati, M.R., Civalek, O.: Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36, 953–964 (2020)

    Google Scholar 

  31. Barretta, R., Fabbrocino, F., Luciano, R., De Sciarra, F.M., Ruta, G.: Buckling loads of nano-beams in stress-driven nonlocal elasticity. Mech. Adv. Mater. Struct. 27, 869–875 (2020)

    Google Scholar 

  32. Barretta, R., Faghidian, S.A., Luciano, R.: Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mech. Adv. Mater. Struct. 26, 1307–1315 (2019)

    Google Scholar 

  33. Pinnola, F.P., Vaccaro, M.S., Barretta, R., de Sciarra, F.M.: Finite element method for stress-driven nonlocal beams. Eng. Anal. Bound. Elem. 134, 22–34 (2022)

  34. Ouakad, H.M., Valipour, A., Żur, K.K., Sedighi, H.M., Reddy, J.N.: On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity. Mech. Mater. 148, 103532 (2020)

    Google Scholar 

  35. Zhang, P., Qing, H., Gao, C.F.: Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos. Struct. 245, 112362 (2020)

    Google Scholar 

  36. Xu, H., He, T., Zhong, N., Zhao, B., Liu, Z.: Transient thermomechanical analysis of micro cylindrical asperity sliding contact of SnSbCu alloy. Tribol. Int. 167, 107362 (2022)

    Google Scholar 

  37. Li, H., Zhang, Y., Tai, Y., Zhu, X., Qi, X., Zhou, L., Lan, H.: Flexible transparent electromagnetic interference shielding films with silver mesh fabricated using electric-field-driven microscale 3D printing. Opt. Laser Technol. 148, 107717 (2022)

  38. Liu, C., Zhao, Y., Wang, Y., Zhang, T., Jia, H.: Hybrid dynamic modeling and analysis of high-speed thin-rimmed gears. J. Mech. Des. 143 (2021)

  39. Gao, T., Zhang, Y., Li, C., Wang, Y., An, Q., Liu, B., Sharma, S: Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Sci. Rep. 11, 1–14 (2021)

  40. Yang, M., Li, C., Said, Z., Zhang, Y., Li, R., Debnath, S., Long, Y.: Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding. J. Manuf. Process. 71, 501–514 (2021)

  41. Abouelregal, A.E., Ersoy, H., Civalek, Ö.: Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 9, 1536 (2021)

    Google Scholar 

  42. Li, B., Li, C., Zhang, Y., Wang, Y., Jia, D., Yang, M.: Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin. J. Aeronaut. 29, 1084–1095 (2016)

    Google Scholar 

  43. Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Dong, L., Wang, J.: Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. Int. J. Precision Eng. Manuf.-Green Technol. 5, 327–339 (2018)

    Google Scholar 

  44. Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G., Cao, H.: Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J. Cleaner Prod. 193, 236–248 (2018)

  45. Jalaei, M.H., Thai, H.T., Civalek, Ö.: On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 172, 103629 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Mojahedin, A., Jabbari, M., Rabczuk, T.: Thermoelastic analysis of functionally graded porous beam. J. Therm. Stresses 41, 937–950 (2018)

    Google Scholar 

  47. Najafzadeh, M., Adeli, M.M., Zarezadeh, E., Hadi, A.: Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field. Mech. Based Des. Struct. Mach. 50, 726–740 (2022)

    Google Scholar 

  48. Feyzi, M.R., Khorshidvand, A.R.: Axisymmetric post-buckling behavior of saturated porous circular plates. Thin-Walled Struct. 112, 149–158 (2017)

    Google Scholar 

  49. Arshid, E., Khorshidvand, A.R.: Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Struct. 125, 220–233 (2018)

    Google Scholar 

  50. Mojahedin, A., Joubaneh, E.F., Jabbari, M.: Thermal and mechanical stability of a circular porous plate with piezoelectric actuators. Acta Mech. 225, 3437–3452 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Yayli, M.O., Asa, E.: Longitudinal vibration of carbon nanotubes with elastically restrained ends using doublet mechanics. Microsyst. Technol. 26, 499–508 (2019)

    Google Scholar 

  52. Yayli, M.O.: On the axial vibration of carbon nanotubes with different boundary conditions. Micro Nano Lett. 9, 807–811 (2014)

    Google Scholar 

  53. Yayli, M., Uzun, B., Deliktas, B.: Buckling analysis of restrained nanobeams using strain gradient elasticity, Waves in Random and Complex Media, (2021), pp. 1-20

  54. Civalek, Ö., Uzun, B., Yayli, M.Ö.: An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Comput. Appl. Math. 41, 1–20 (2022)

    MathSciNet  MATH  Google Scholar 

  55. Uzun, B., Kafkas, U., Yayli, M.: Axial dynamic analysis of a Bishop nanorod with arbitrary boundary conditions. ZAMM J. Appl. Math. Mech./Zeitschrift fr Angewandte Mathematik und Mechanik 100 (2020)

  56. Civalek, Ö., Uzun, B., Yayli, M.Ö.: Longitudinal vibration analysis of FG nanorod restrained with axial springs using doublet mechanics. Waves Random Complex Media, pp. 1–23 (2021)

  57. Civalek, Ö., Uzun, B., Yayli, M.Ö.: Buckling analysis of nanobeams with deformable boundaries via doublet mechanics. Arch. Appl. Mech. 91, 4765–4782 (2021)

  58. Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. B 114, 184–188 (2017)

    Google Scholar 

  60. Reddy, J.N.: Energy Principles Variational Methods in Applied Mechanics, third ed. Wiley, New Jersey (2017)

  61. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Google Scholar 

  62. Wu, C.H.: Cohesive elasticity and surface phenomena. Q. Appl. Math. 50, 73–103 (1992)

    MathSciNet  MATH  Google Scholar 

  63. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Büşra Uzun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzun, B., Civalek, Ö. & Yaylı, M.Ö. Torsional and axial vibration of restrained saturated nanorods via strain gradient elasticity. Arch Appl Mech 93, 1605–1630 (2023). https://doi.org/10.1007/s00419-022-02348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02348-2

Keywords

Navigation