Skip to main content

Advertisement

Log in

Compound Bursting Behaviors in the Parametrically Amplified Mathieu–Duffing Nonlinear System

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

This paper primarily investigates five novel compound bursting patterns in the parametrically amplified Mathieu-Duffing nonlinear energy harvesters (PAMDNEH). The five new compound bursting patterns, i.e. compound “subHopf/LPC-delayed subHopf/LPC-subHopf/LPC” bursting, compound “subHopf/LPC-subHopf/LPC” bursting, compound “subHopf/LPC-subHopf/LPC” bursting via “subHopf/subHopf” hysteresis loop, compound “subHopf/supHopf-supHopf/LPC” bursting via “subHopf/subHopf” hysteresis loop and “subHopf/LPC” bursting via “subHopf/subHopf” hysteresis loop, are explored. In addition, two normal bursting patterns, i.e. “subHopf/subHopf” bursting and “fold/fold” bursting, are also investigated.

Method

By using the two-bifurcation analysis method, the compound “subHopf/LPC-delayed subHopf/LPC-subHopf/LPC” bursting and its dynamical evolutions is investigated. The correctness of the results is verified by the numerical simulation.

Results

We find that the parameter plane can be divided into six different areas according to the types and numbers of the Hopf bifurcation points, and different bifurcation structures and different patterns of the clusters will be created, which lead to different bursting oscillations, including compound bursting types and normal bursting patterns. Because bursting oscillations is created when the variables switch between/among different attractors, the bursting oscillation amplitude is big enough to surmount the potential obstacles of the energy harvesters. Therefore, bursting oscillations may have a very important application in energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li XH, Hou JY (2016) Bursting phenomenon in a piecewise mechanical system with parameter perturbation in stiffness. Int J Non-Linear Mech 81:165–176

    Google Scholar 

  2. Qu R, Li SL, Bi QS (2019) Forced vibration of shape memory alloy spring oscillator and the mechanism of sliding bifurcation with dry friction. Adv Mech Eng 11(5):1687814019851976

    Google Scholar 

  3. Liu YR, Liu SQ (2020) Canard-induced mixed-mode oscillations and bifurcation analysis in a reduced 3D pyramidal cell model. Nonlinear Dyn 101(1):531–567

    Google Scholar 

  4. Golomb D, Yue CY, Yaari Y (2006) Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cell: combined experimental and modeling study. J Neurophysiol 96(4):1912–1926

    Google Scholar 

  5. Mao WH, Chen ZY, Zhang ZD et al (2020) Nonlinear vibrations by periodic perturbation in a Murali-Laksh-manan-Chua electronic circuit combined with multiple frequency signal. J Vib Eng Technol 8:567–578

    Google Scholar 

  6. Wang ZX, Zhang ZD, Bi QS (2020) Bursting oscillations with delayed C-bifurcations in a modified Chua’s circuit. Nonlinear Dyn 100(3):2899–2915

    Google Scholar 

  7. Bakes D, Schreiberova L, Schreiber I, et al. Mixed-mode oscillations in a homogeneous pH-oscillatory chemical reaction system. Chaos, 2008, 18(1): 015102.

  8. Hasan CR, Krauskopf B, Osinga HM (2017) Mixed-mode oscillations and twin canard orbits in an autocatalytic chemical reaction. Siam J Appl Dyn Syst 16(4):2165–2195

    MathSciNet  MATH  Google Scholar 

  9. Zhang XF, Zheng JK, Wu GQ, et al. Mixed mode oscillations as well as the bifurcation mechanism in a Duffing’s oscillator with two external periodic excitations. Sci China-Technol Sci 62(10): 1816–1824.

  10. Zhang MR, Bi QS (2021) On occurrence of bursting oscillations in a dynamical system with a double Hopf bifurcation and slow-varying parametric excitations. Int J Non-Linear Mech 128: 103629.

  11. Chen XK, Li SL, Zhang ZD et al (2017) Relaxation oscillations induced by an order gap between exciting frequency and natural frequency. Sci China-Technol Sci 60(2):289–298

    Google Scholar 

  12. Wang N, Zhang GS, Bao H (2019) Bursting oscillations and coexisting attractors in a simple memristor-capacitor-based chaotic circuit. Nonlinear Dyn 97(2):1477–1494

    MATH  Google Scholar 

  13. Bi QS, Li SL, Kurths J et al (2016) The mechanism of bursting oscillations with different codimensional bifurcations and nonlinear structures. Nonlinear Dyn 85(2):993–1005

    MathSciNet  Google Scholar 

  14. Inaba N, Tsubone T. Nested mixed-mode oscillations, part II: experimental and numerical study of a classical Bonhoeffer-van der Pol oscillator. Physica D-Nonlinear Phenomena, 2020, 406: 132493.

  15. Hudson JL, Hart M, Marinko D (1979) An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov-Zhabotinskii reaction. J Chem Phys 71:1601–1606

    Google Scholar 

  16. Sadhu S, Kuehn C. Stochastic mixed-mode oscillations in a three-species predator-prey model. Chaos, 2018, 28: 033606.

  17. Liu P, Liu XJ, Yu P (2017) Mixed-mode oscillations in a three-store calcium dynamics model. Commun Nonlinear Sci Numer Simul 52:148–164

    MathSciNet  MATH  Google Scholar 

  18. Zhou CY, Li ZJ, Xie F et al (2019) Bursting oscillations in Sprott B system with multi-frequency slow excitations: two novel “Hopf/Hopf”-hysteresis-induced bursting and complex AMB rhythms. Nonlinear Dyn 97(4):2799–2811

    MATH  Google Scholar 

  19. Xu YY, Luo ACJ (2020) Independent period-2 motions to chaos in a van der Pol-Duffing oscillator. Int J Bifurcation Chaos 30(15):2030045

    MathSciNet  MATH  Google Scholar 

  20. Kingston SL, Thamilmaran K (2017) Bursting oscillations and mixed-mode oscillations in Driven Lienard system. Int J Bifurcation Chaos 27(7):1730025

    MathSciNet  MATH  Google Scholar 

  21. Fernandez-Garcia S, Vidal A (2020) Symmetric coupling of multiple timescale systems with mixed-mode oscillations and synchronization. Physica D-Nonlinear Phenomena 401: 132129.

  22. Zhang SH, Zhang HL, Wang C, et al. (2020) Bursting oscillations and bifurcation mechanism in a permanent magnet synchronous motor system with external load perturbation. Chaos, Solitons & Fractals 141: 110355.

  23. Desroches M, Kaper TJ, Krupa M (2013) Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos 23(4): 046106.

  24. Li XH, Bi QS (2012) Bursting oscillation in CO oxidation with small excitation and the enveloping slow–fast analysis method. Chinese Physics B 21(6): 060505.

  25. Simo H, Woafo P (2011) Bursting oscillations in electromechanical systems. Mech Res Commun 38(8):537–541

    MATH  Google Scholar 

  26. Wang HX, Wang QY, Lu QS (2011) Bursting oscillations, bifurcation and synchronization in neuronal systems. Chaos Solitons Fractals 44(8):667–675

    MATH  Google Scholar 

  27. Han XJ, Xia FB, Zhang C et al (2017) Origin of mixed-mode oscillations through speed escape of attractors in a Rayleigh equation with multiple-frequency excitations. Nonlinear Dyn 88:2693–2703

    Google Scholar 

  28. Inaba N, Kousaka T. Nested mixed-mode oscillations. Physica D-Nonlinear Phenomena, 2020, 401: 132152.

  29. Yang ZQ, Wang QY, Danca MF et al (2012) Complex dynamics of compound bursting with burst episode composed of different bursters. Nonlinear Dyn 70(3):2003–2013

    Google Scholar 

  30. Ma XD, Cao SQ, Guo HL (2018) Routes to bursting oscillations in a modified van der Pol-Duffing oscillator with slow-varying periodic excitation. J Vib Control 24(21):4960–4970

    Google Scholar 

  31. Bertram R, Rhoads J, Cimbora WP (2008) A phantom bursting mechanism for episodic bursting. Bull Math Biol 70(7):1979–1993

    MathSciNet  MATH  Google Scholar 

  32. Kelly MJ, Wagner EJ. GnRH neurons and episodic bursting activity. Trends Endocrinol Metab 13(10): 409–410.

  33. Han XJ, Xia FB, Ji P et al (2016) Hopf-bifurcation-delay-induced bursting patterns in a modified circuit system. Commun Nonlinear Sci Numer Simul 36:517–527

    MATH  Google Scholar 

  34. Fallah H (2016) Symmetric fold/super-Hopf bursting, chaos and mixed-mode oscillations in Pernarowski model of pancereatic beta-cells. Int J Bifurcation Chaos 26(9):1630022

    MATH  Google Scholar 

  35. Duan LX, Liang TT, Zhao YQ et al (2021) Multi-time scale dynamics of mixed depolarization block bursting. Nonlinear Dyn 103:1043–1053

    Google Scholar 

  36. Ma XD, Jiang WA, Zhang XF, et al. Complex bursting dynamics of a Mathieu-van der Pol-Duffing energy harvester. Physica Scripta, 2021, 96: 015213.

  37. Wei MK, Jiang WA, Ma XD, et al. (2021) Compound bursting dynamics in a parametrically and externally excited mechanical system. Chaos, Solitons & Fractals 143: 110605.

  38. Kouayep RM, Talla AF, Mbe JHT et al (2020) Bursting oscillations in Colpitts oscillator and application in optoelectronics for the generation of complex optical signals. Opt Quantum Electron 52(6):291

    Google Scholar 

  39. Tunnacliffe E, Corrigan AM, Chubb JR (2018) Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication. Proc Natl Acad Sci USA 115(33):8364–8369

    Google Scholar 

  40. Yu Y, Zhang ZD, Han XJ (2018) Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system. Commun Nonlinear Sci Numer Simul 56:380–391

    MathSciNet  MATH  Google Scholar 

  41. Han XJ, Bi QS, Zhang C et al (2014) Delayed bifurcations to repetitive spiking and classification of delay-induced bursting. Int J Bifurcation Chaos 24(7):1450098

    MathSciNet  MATH  Google Scholar 

  42. Han XJ, Bi QS, Kurths J (2018) Route to bursting via pulse-shaped explosion. Phys Rev E 98(1): 010201.

  43. Ma XD, Song J, Wei MK et al (2021) Complex bursting patterns in a van der Pol-Mathieu-Duffing oscillator. Int J Bifurcation Chaos 31(6):2150082

    MathSciNet  MATH  Google Scholar 

  44. Meng P, Wang QY, Lu QS (2013) Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling. Cognitive Neurodyn 7(3):197–212

    Google Scholar 

  45. Han XJ, Yu Y, Zhang C et al (2017) Turnover of hysteresis determines novel bursting in duffing system with multiple-frequency external forcings. Int J Non-Linear Mech 89:69–74

    Google Scholar 

  46. Cohen N, Bucher I, Feldman M (2012) Slow–fast response decomposition of a bi-stable energy harvester. Mech Syst Signal Process 31:29–39

    Google Scholar 

  47. Jiang WA, Han XJ, Chen LQ et al (2020) Bursting vibration-based energy harvesting. Nonlinear Dyn 100:3043–3060

    Google Scholar 

  48. Jiang WA, Ma XD, Liu M et al (2021) Exploiting bursting oscillations to improve energy capture from slowly changing excitation. J Vib Eng Technol. https://doi.org/10.1007/s42417-021-00340-8

    Article  Google Scholar 

  49. Makihara K, Yamamoto Y, Yoshimizu K, et al. (2015) A novel controller to increase harvested energy from negating vibration-suppression effect. Smart Materials and Structures 24(5): 037005.

  50. Kailicic D, Chatterjee T, Cajic M, et al. (2020) Parametrically amplified Mathieu-Duffing nonlinear energy harvester. J Sound Vib 488: 115677.

  51. De la Sen M (2007) Stability criteria for linear time-invariant systems with point delays based on one-dimensional Routh-Hurwitz tests. Appl Math Comput 187(2):1199–1207

    MathSciNet  MATH  Google Scholar 

  52. Maree GJM (1996) Slow passage through a pitchfork bifurcation. SIAM J Appl Math 56(3):889–918

    MathSciNet  MATH  Google Scholar 

  53. Premraj D, Suresh K, Banerjee T et al (2016) An experimental study of slow passage through Hopf and pitchfork bifurcations in a parametrically driven nonlinear oscillator. Commun Nonlinear Sci Numer Simul 37:212–221

    MathSciNet  MATH  Google Scholar 

  54. Bilinsky LM, Baer SM (2018) Slow passage through a Hopf bifurcation in excitable nerve cables: spatial delays and spatial memory effects. Bull Math Biol 80(1):130–150

    MathSciNet  MATH  Google Scholar 

  55. Baer SM, Erneux T, Rinzel J (1989) The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J Appl Math 49(1):55–71

    MathSciNet  MATH  Google Scholar 

  56. Diminnie DC, Haberman R (2002) Slow passage through homoclinic orbits for unfolding of a saddle-center bifurcation and the change in the adiabatic invariant. Physica D-Nonlinear Phenomena 162:34–52

    MathSciNet  MATH  Google Scholar 

  57. Diminnie DC, Haberman R (2002) Slow passage through the nonhyperbolic homoclinic orbit of the saddle-center Hamiltonian bifurcation. Stud Appl Math 108(1):65–75

    MathSciNet  MATH  Google Scholar 

  58. Wen ZH, Li ZJ, Li X (2019) Bursting oscillations and bifurcation mechanism in memristor-based Shimizu-Morioka system with two time scales. Chaos Solitons Fractals 128:58–70

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Grant nos. 12002134, 11872188, 12072165 and 11972173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xindong Ma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhang, X., Yu, Y. et al. Compound Bursting Behaviors in the Parametrically Amplified Mathieu–Duffing Nonlinear System. J. Vib. Eng. Technol. 10, 95–110 (2022). https://doi.org/10.1007/s42417-021-00366-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00366-y

Keywords

Navigation