Skip to main content

Advertisement

Log in

Rapidly Convergent Solution of Nonlinear Oscillators with General Non-rational Restoring Force

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

A rapidly convergent solution for nonlinear oscillatory system with non-rational restoring force has been presented.

Method

The energy balance method has been extended and applied to solve said nonlinear oscillator.

Result

It has been verified that the second approximate solution is better than that obtained by the usual energy balance method and it is close to corresponding third approximate solution obtained by harmonic balance method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(A\) :

Oscillation amplitude

\(x\) :

Dimensionless displacement

\(T\) :

Period of oscillation

\(t\) :

Time

\(f\) :

Nonlinear function

\(F,G\) :

General nonlinear function

\(u,\;v\) :

Constant parameters

\(I_{0}\), \(I_{1}\), \(I_{2}\), \(q\), \(b\) :

Constant parameters

\(m\) :

Positive integer

\(C_{0} ,\,C_{2} , \ldots\) :

Constant coefficient parameters

\(m_{0}\) :

Constant parameters

\(\pi\) :

pi

\(\omega\) :

Natural frequency

\(\varphi\) :

An angle

\(\lambda ,\gamma\) :

Constant coefficient parameter

\(\varGamma\) :

Gamma function

EBM:

Energy balance method

HBM:

Harmonic balance method

DTM:

Differential transformation method

SSA:

Simple solution approach

FAF:

Frequency–amplitude formulation

Er:

Error

References

  1. Krylov NN, Bogoliubov NN (1947) Introduction to nonlinear mechanics. Princeton University Press, Princeton

    MATH  Google Scholar 

  2. Nayfeh AH (1973) Perturbation methods. Wiley, New York

    MATH  Google Scholar 

  3. Nayfeh AH (1981) Introduction to perturbation techniques. Wiley, New York

    MATH  Google Scholar 

  4. Dey P, Sattar MA, Ali MZ (2010) Perturbation theory for damped forced vibrations with slowly varying coefficients. J Vib Eng Technol 9(4):375–382

    Google Scholar 

  5. Mickens RE (1986) A generalization of the method of harmonic balance. J Sound Vib 111:515–518

    Article  MathSciNet  MATH  Google Scholar 

  6. Lim CW, Wu BS (2003) A new analytical approach to the Duffing-harmonic oscillator. Phys Lett A 311:365–373

    Article  MathSciNet  MATH  Google Scholar 

  7. Lim CW, Lai SK, Wu BS (2005) Accurate higher-order analytical approximate solutions to large-amplitude oscillating systems with general non-rational restoring force. J Nonlinear Dyn 42:267–281

    Article  MATH  Google Scholar 

  8. Wu BS, Sun WP, Lim CW (2006) An analytical approximate technique for a class of strongly nonlinear oscillators. Int J Non Linear Mech 41:766–774

    Article  MATH  Google Scholar 

  9. Rahman MS, Hasan ASMZ, Lee YY (2016) Free vibration analysis of third and fifth order nonlinear axially loaded beams using the multi-level residue harmonic balance method. J Vib Eng Technol 4(1):69–78

    Google Scholar 

  10. Hu H (2006) Solution of a quadratic nonlinear oscillator by the method of harmonic balance. J Sound Vib 293:462–468

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu H (2006) Solutions of Duffing-harmonic oscillator by an iteration procedure. J Sound Vib 298:446–452

    Article  MathSciNet  MATH  Google Scholar 

  12. Alam MS, Haque ME, Hossian MB (2007) A new analytical technique to find periodic solutions of nonlinear systems. Int J Non-Linear Mech 42:1035–1045

    Article  MATH  Google Scholar 

  13. Lai SK, Lim CW, Wu BS, Wang C, Zeng QC, He XF (2009) Newton-harmonic balancing approach for accurate solutions to nonlinear cubic-quintic duffing oscillators. Appl Math Model 33:852–866

    Article  MathSciNet  MATH  Google Scholar 

  14. Hosen MA, Rahman MS, Alam MS, Amin MR (2012) An analytical technique for solving a class of strongly nonlinear conservative systems. Appl Math Comput 218:5474–5486

    MathSciNet  MATH  Google Scholar 

  15. Rahman MS, Haque ME, Shanta SS (2010) Harmonic balance solution of nonlinear differential equation (non-conservative). Adv Vib Eng 9(4):345–356

    Google Scholar 

  16. Lim CW, Wu BS (2003) Accurate approximate analytical solutions to nonlinear oscillating systems with a non-rational restoring force. Adv Vib Eng 2(4):381–389

    Google Scholar 

  17. Belendez A (2007) Application of He’s homotopy perturbation method to the Duffing-harmonic oscillator. Int J Non Linear Sci Numer Simul 8:79–88

    Google Scholar 

  18. Belendez A, Belendez T, Hernandez A, Gallego S, Ortuno M, Neipp C (2017) Comments on investigation of the properties of the period for the nonlinear oscillator \(\ddot{x} + (1 + \dot{x}^{2} ) = 0\). J Sound Vib 303:925–30

  19. Belendez A, Pascual C, Gallego S, Ortuno M, Neipp C (2007) Application of a modified He’s homotopy perturbation method to obtain higher-order approximation of an x 1/3 force nonlinear oscillator. Phys Lett A 371:421–426

    Article  MATH  Google Scholar 

  20. Sheikholeslami M, Ganji DD (2013) Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol 235:873–879

    Article  Google Scholar 

  21. Belendez A, Hernandz A, Marquez A, Belendez T, Neipp C (2007) Application of He’s homotopy perturbation method to nonlinear pendulum. Eur J Phys 28:93–104

    Article  MATH  Google Scholar 

  22. Sheikholeslami M, Ashorynejada HR, Ganji DD, Yıldırım A (2012) Homotopy perturbation method for three-dimensional problem of condensation film on inclined rotating disk. Sci Iran B 19(3):437–442

    Article  Google Scholar 

  23. Haque BMI, Alam MS, Rahmam MM (2013) Modified solutions of some oscillators by iteration procedure. J Egypt Math Soc 21:68–73

    Article  MathSciNet  Google Scholar 

  24. Lim CW, Wu BS (2002) A modified procedure for certain non-linear oscillators. J Sound Vib 257:202–206

    Article  MathSciNet  MATH  Google Scholar 

  25. Lim CW, Wu BS, Sun WP (2006) Higher accuracy analytical approximations to the Duffing-harmonic oscillator. J Sound Vib 296:1039–1045

    Article  MathSciNet  MATH  Google Scholar 

  26. Sheikholeslami M, Ganji DD (2015) Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng 283:651–663

    Article  MathSciNet  MATH  Google Scholar 

  27. Cveticanin L, Kalami-Yazdi M, Askari H (2012) Analytical approximations to the solutions for a generalized oscillator with strong nonlinear terms. J Eng Math 77:211–223

    Article  MathSciNet  MATH  Google Scholar 

  28. Cveticanin L, Pogany T (2012) Oscillator with a sum of non integer-order nonlinearities. J Appl Math 2012:1–20 (Article ID 649050)

    MATH  Google Scholar 

  29. Belendez A, Hernandez A, Belendez T, Pascual C, Alvarez ML, Arribas E (2016) Solutions for conservative nonlinear oscillators using an approximate method based on Chebyshev series expansion of the restoring force. Acta Phys Pol A 130:667–678

    Article  Google Scholar 

  30. Cveticanin L, Kalami-Yazdi M, Saadatnia Z, Askari H (2010) Application of hamiltonian approach to the generalized nonlinear oscillator with fractional power. Int J Nonlinear Sci Numer Simul 11(12):997–1002

    Article  Google Scholar 

  31. Guo Z, Leung AYT (2010) The iterative homotopy harmonic balance method for conservative Helmholtz–Duffing oscillators. Appl Math Comput 215:3163–3169

    MathSciNet  MATH  Google Scholar 

  32. He JH (2002) Preliminary report on the energy balance for nonlinear oscillations. Mech Res Commun 29:107–111

    Article  MATH  Google Scholar 

  33. Khan Y, Mirzabeigy A (2014) Improved accuracy of He’s energy balance method for analysis of conservative nonlinear oscillator. Neural Comput Appl 25:889–895

    Article  Google Scholar 

  34. Alam MS, Razzak MA, Hosen MA, Parvez MR (2016) The rapidly convergent solutions of strongly nonlinear oscillators. SpringerPlus 5:1–16 (Article ID 1258)

    Article  Google Scholar 

  35. Molla MHU, Alam MS (2017) More accurate approximate analytical solution of pendulum with rotating support. Afr J Math Comput Sci Res 10(1):1–4

    Article  Google Scholar 

  36. Molla MHU, Razzak MA, Alam MS (2017) An analytical technique for solving quadratic nonlinear oscillator. Multidiscip Model Mater Struct 13(3):424–433

    Article  Google Scholar 

  37. Molla MHU, Alam MS (2017) Higher accuracy analytical approximations to nonlinear oscillators with discontinuity by energy balance method. Results Phys 7:2104–2110

    Article  Google Scholar 

  38. Aslan EC, Mustafa Inc (2016) Energy balance method for solving u 1/3 force nonlinear oscillator. Prespacetime J 7:806–813

    Google Scholar 

  39. Pashaei H, Ganji DD, Akbarzade M (2008) Application of the energy balance method for strongly nonlinear oscillators. Prog Electromagn Res M 2:47–56

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the honorable reviewer for his valuable comments and suggestions in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. U. Molla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

For “Example 3.1” (Harmonic Balance Method)

In general, a third approximate solution of Eq. (12) is chosen in a form [37]

$$x(t) = A((1 - u - v)\cos \varphi + u\cos 3\varphi + v\cos 5\varphi ).$$
(37)

Substituting Eq. (37) into Eq. (12) and equating, respectively, the coefficient of \(\cos \varphi\), \(\cos 3\varphi\), and \(\cos 5\varphi\), the following algebraic equations are obtained

$$- A(1 - u - v)\,\omega^{2} + A^{q - 1} I_{0} (8 + 6q + q^{2} + 16u - 12qu - 4q^{2} u + 12qv - 12q^{2} v)/(q + 4) = 0 ,$$
(38)
$$\begin{aligned} - 9Au\omega^{2} + A^{q - 1} I_{0} ( - 48 + 4q + 8q^{2} + q^{3} - 192u + 184qu + 12q^{2} u \hfill \\ - 4q^{3} u + 96v - 168qv + 84q^{2} v - 12q^{3} v)/(q^{2} + 10q + 24) = 0 \hfill \\ \end{aligned} ,$$
(39)
$$\begin{aligned} - 25Av\omega^{2} + A^{q - 1} I_{0} (384 - 176q - 28q^{2} + 8q^{3} + q^{4} + 1536u - 2176qu + 568q^{2} u + 76q^{3} u \hfill \\ \quad - 4q^{4} u - 1536v + 1824qv - 552q^{2} v + 276q^{3} v - 12q^{4} v)/(q^{3} + 18q^{2} + 104q + 192) = 0 \hfill \\ \end{aligned} .$$
(40)

Eliminating \(\omega^{2}\) between Eqs.(38) and (39) and then Eqs.(38) and (40), ignoring \(u^{3} ,u^{4} ,u^{5} , \cdots\) and \(v^{2} ,v^{3} , \ldots\) terms, the following equations are obtained

$$\begin{aligned} - 48 + 4q + 8q^{2} + q^{3} - (576 + 216q + 104q^{2} + 14q^{3} )u \hfill \\ + ( - 672 + 320q + 312q^{2} + 40q^{3} )u^{2} + (144 - 172q + 76q^{2} - 13q^{3} )v = 0, \hfill \\ \end{aligned}$$
(41)
$$\begin{aligned} 384 - 176q - 28q^{2} + 8q^{3} + q^{4} + (1152 - 2000q + 596q^{2} 68q^{3} - 5q^{4} )u \hfill \\ + ( - 1536 + 2176q - 568q^{2} - 76q^{3} + 4q^{4} )u^{2} \hfill \\ - (11520 + 8000q + 4024q^{2} + 232q^{3} + 38q^{4} )v = 0. \hfill \\ \end{aligned}$$
(42)

Solving Eqs. (41) and (42) simultaneously, we get the values of \(u\) and \(v\). Then substituting these values of \(u\), \(v\) in Eq. (38) and simplifying, we obtain third approximation of the frequency \(\omega = \omega_{3}\) as well as period \(T_{3} = 2\pi /\omega_{3}\).

Appendix 2

For “Example 3.2” (Harmonic Balance Method)

Generally, a second approximate solution of Eq. (17) is chosen in a form [37]

$$x(t) = A((1 - u)\,\cos \varphi + u\cos 3\varphi ).$$
(43)

Substituting Eq. (43) into Eq. (17) and equating the coefficient of \(\cos \varphi\) and \(\cos 3\varphi\), the following algebraic equations are obtained

$$A(9 - 9u) + A^{1/3} (320m_{0} - 128m_{0} u - 96m_{0} u^{2} ) - A(9 - 9u)\omega^{2} = 0,$$
(44)
$$99Au - A^{1/3} (704m_{0} - 1760m_{0} u - 1824m_{0} u^{2} ) - 891Au\omega^{2} = 0,$$
(45)

where \(m_{0} = \frac{\varGamma (7/6)}{4\sqrt \pi \varGamma (11/3)}.\)

Eliminating \(\omega^{2}\) between Eqs.(44) and (45) and then ignoring higher order terms of \(u\) (more than two), we obtain

$$792m_{0} + (891A^{2/3} + 32868m_{0} )u - (891A^{2/3} + 14328m_{0} )u^{2} = 0 .$$
(46)

This quadratic equation has two roots. The smallest of \(\left| u \right|\) is the required value of \(u\). Substituting the value of \(u\) in Eq. (44) and simplifying, then the second approximate frequency \(\omega_{2}\) is obtained.

Similarly, a third approximate solution of Eq. (17) is chosen in a form [37]

$$x(t) = A((1 - u - v)\cos \varphi + u\cos 3\varphi + v\cos 5\varphi ).$$
(47)

Substituting Eq. (47) into Eq. (17) and the coefficient of \(\cos \varphi\), \(\cos 3\varphi\), and \(\cos 5\varphi\) are equating, the following algebraic equations are obtained

$$A(9 - 9u - 9v) + A^{1/3} (320m_{0} - 128m_{0} u - 96m_{0} v) - A(9 - 9u - 9v)\,\omega^{2} = 0 ,$$
(48)
$$99Au - A^{1/3} (704m_{0} - 1760m_{0} u + 192m_{0} v) - 891Au\,\omega^{2} = 0 ,$$
(49)
$$99Av + A^{1/3} (352m_{0} - 544m_{0} u + 1536m_{0} v) - 2475Av\,\omega^{2} = 0 ,$$
(50)

where \(m_{0} = \frac{\varGamma (7/6)}{4\sqrt \pi \,\varGamma (11/3)}.\)

Eliminating \(\omega^{2}\) between Eqs.(48) and (49) and between (48) and (50) then ignoring \(u^{3} ,u^{4} ,u^{5} , \ldots\) and \(v^{2} ,v^{3} , \ldots\) terms, we obtain

$$792m_{0} + (891A^{2/3} + 32868m_{0} )u - (891A^{2/3} + 12276m_{0} )u^{2} - 576m_{0} v = 0 ,$$
(51)
$$( - 396 + 1008\,u - 612u^{2} )m_{0} + (2673A^{2/3} + 97668m_{0} )v = 0 .$$
(52)

Solving Eqs. (51) and (52) simultaneously, obtained value of \(u\) and \(v\) are used in Eq. (48), then the frequency \(\omega = \omega_{3}\) is obtained.

Appendix 3

The expression \(x^{q} - A^{q}\) can be written as \(\sin^{2} \varphi \times \frac{{\,(x^{q} - A^{q} )}}{{\sin^{2} \varphi }}\) and substituting the value of \(x\) from Eq. (5) then \(\frac{{x^{q} - A^{q} }}{{\sin^{2} \varphi }}\) can be easily expanded in a Fourier series \(A^{q} (C_{0} + C_{2} \cos 2\varphi + \cdots )\), thus

$$x^{q} - A^{q} = A^{q} \sin^{2} \varphi \,(C_{0} + C_{2} \cos 2\varphi + \cdots ),$$
(53)

where \(C_{0}\), \(C_{2}\) are Fourier coefficients which are expressed (with help of Mathematica software) as

$$C_{0} = ( - 2 - q - 4(2 + q)u + 8( - 1 + q)u^{2} )I_{0} ,$$
(54)
$$C_{2} = 8/q + \frac{{( - (2 + q)^{2} (4 + q) - 4q^{2} (4 + q)u + 8( - 2 + q)( - 1 + q)qu^{2} I_{0} }}{q\,(2 + q/2)},$$
(55)

where \(I_{0} = \frac{\varGamma ((1 + q)/2)}{\sqrt \pi \,\varGamma (2 + q/2)}.\)

Appendix 4

We modified the term \(x^{{{\raise0.7ex\hbox{$8$} \!\mathord{\left/ {\vphantom {8 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}}\) as following way:

\(x\) can be written as \(x = x_{0} + u_{1}\)where \(x_{0} = A\cos \omega t\) and \(u_{1} = A( - {\kern 1pt} u\,\cos \omega t + u\,\cos 3\omega t)\) which satisfy Eq. (5) so

$$\begin{aligned} x^{{{\raise0.7ex\hbox{$8$} \!\mathord{\left/ {\vphantom {8 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} & = (x_{0} + u_{1} )^{{{\raise0.7ex\hbox{$8$} \!\mathord{\left/ {\vphantom {8 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} \\ & \cong x_{0}^{{{\raise0.7ex\hbox{$8$} \!\mathord{\left/ {\vphantom {8 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} + \frac{8}{3}x_{0}^{{{\raise0.7ex\hbox{$5$} \!\mathord{\left/ {\vphantom {5 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} u_{1} + \frac{20}{9}x_{0}^{{{\raise0.7ex\hbox{$2$} \!\mathord{\left/ {\vphantom {2 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} u_{1}^{2} , \\ \end{aligned}$$
(56)

where ignoring more than \(u_{1}^{2}\) terms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molla, M.H.U., Alam, M.S. & Alam, M.F. Rapidly Convergent Solution of Nonlinear Oscillators with General Non-rational Restoring Force. J. Vib. Eng. Technol. 7, 445–454 (2019). https://doi.org/10.1007/s42417-019-00142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-019-00142-z

Keywords

Navigation