Skip to main content
Log in

Dynamic Response and Vibration Power Flow Analysis of Rectangular Isotropic Plate Using Fourier Series Approximation and Mobility Approach

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

In this paper, a unified and numerically efficient method is proposed to analyse the dynamic response and vibration power flow characteristics of flat isotropic rectangular plate subjected to a harmonic loading.

Method

The boundary of the plate system has been assumed to be elastic boundary and expressed as a combination of translational and rotational spring stiffness, making the system near to real system. The plate displacement function has been derived using combination of trial beam functions, expressed as modified Fourier cosine series, in x and y direction. Finally, Rayleigh-Ritz method is employed to the Lagrangian function to derive the frequency matrix.

Results

The derived frequency matrix can be universally applied to analyse the dynamic response of the plate system and power flow distribution on the plate surface for any condition of boundary condition and force application.

Conclusion

The method is numerically superior to other method because of omission of complex hyperbolic trigonometric functions and appreciable reduction of the size of the frequency matrix, which has been established through comparison of results with the existing literature

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen XL, Sheng MP (2007) Research on vibration characteristics of L-shaped plate using a mobility power flow approach. J Mar Sci Appl 6:12–16

    Article  Google Scholar 

  2. Cheung YK, Zhou D (2000) Vibrations of rectangular plates with elastic intermediate line-supports and edge constraints. Thin Walled Struct 37:305–331

    Article  Google Scholar 

  3. Cho DS, Kim BH, Kim JH, Vladimir N, Choi TM (2015) Forced vibration analysis of arbitrarily constrained rectangular plates and stiffened panels using the assumed mode method. Thin Walled Struct 90:182–190

    Article  Google Scholar 

  4. Dozio L (2011) On the use of the Trigonometric Ritz method for general vibration analysis of rectangular Kirchhoff plates. Thin Walled Struct 49(1):129–144

    Article  Google Scholar 

  5. Gorman DJ (2000) Free vibration and buckling of in-plane loaded plates with rotational elastic edge support. J Sound Vib 225:755–773

    Article  Google Scholar 

  6. Jin Guo-yong et al (2010) The influence of edge restraining stiffness on the transverse vibrations of rectangular plate structures. J Mar Sci Appl 9(4):393–402

    Article  Google Scholar 

  7. Kessissoglou NJ (2004) Power transmission in L-shaped plates including flexural and in-plane vibration. J Acoust Soc Am 115:1157–1169

    Article  Google Scholar 

  8. Li WL (2004) Vibration analysis of rectangular plates with general elastic boundary supports. J Sound Vib 273(3):619–635

    Article  Google Scholar 

  9. Li WL, Zhang XF, Du JT, Liu ZG (2009) An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports. J Sound Vib 321:254–269

    Article  Google Scholar 

  10. Lin TR, Tan ACC, Yan C et al (2011) Vibration of L-shaped plates under a deterministic force or moment excitation: a case of statistical energy analysis application. J Sound Vib 330:4780–4797

    Article  Google Scholar 

  11. Liu CC, Li FM, Liang TW et al (2011) The wave and vibratory power transmission in a finite L-shaped Mindlin plate with two simply supported opposite edges. Acta Mech Sinca 27(5):785–795

    Article  MathSciNet  Google Scholar 

  12. Liu X, Banerjee JR (2016) Free vibration analysis for plates with arbitrary boundary conditions using a novel spectral-dynamic stiffness method. Comput Struct 164:108–126

    Article  Google Scholar 

  13. Ma Y, Zhang Y, Kennedy D (2016) Energy flow analysis of mid-frequency vibration of coupled plate structures with a hybrid analytical wave and finite element model. Comput Struct 175:1–14

    Article  Google Scholar 

  14. Pradhan KK, Chakraverty S (2015) Transverse vibration of isotropic thick rectangular plates based on new inverse trigonometric shear deformation theories. Int J of Mech Sci 94–95:211–231

    Article  Google Scholar 

  15. Rao JS (1998) Dynamics of plates. Narosa Publishing House and Marcel Dekker Inc., New Delhi, Madras, Bombay, Calcutta, New York, Basel, Hong Kong

    Google Scholar 

  16. Xianjie Shi, Shi Dongyan (2018) Free and forced vibration analysis of T shaped plates with general elastic boundary supports. J Low Freq Noise Vib Act Control 37(2):355–372

    Article  Google Scholar 

  17. Shu CA (1997) Generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates. Int J Mech Sci 34:837–846

    Article  Google Scholar 

  18. Ye T, Jin G, Su Z, Chen Y (2014) A modified Fourier solution for vibration analysis of moderately thick laminated plates with general boundary restraints and internal line supports. Int J Mech Sci 80:29–46

    Article  Google Scholar 

  19. Zhang H, Shi D, Wang Q (2017) An improved Fourier series solution for free vibration analysis of the moderately thick laminated composite rectangular plate with non-uniform boundary conditions. Int J Mech Sci 121:1–20

    Article  Google Scholar 

  20. Zhang X, Li WL (2009) Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints. J Sound Vib 326(1):221–234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Panigrahi.

Appendix A

Appendix A

$$G_{11} = \, \left( {1 + \eta i} \right) - \hat{K}_{Tx0} \left( {\cos \left( {2a} \right)/\left( {6\sin \left( {2a} \right)} \right) - \cos \left( a \right)/\left( {3\sin \left( a \right)} \right)} \right)$$
$$G_{12} = - \hat{K}_{Tx0} \left( {1/\left( {3\sin \left( a \right)} \right) - 1/\left( {6\sin \left( {2a} \right)} \right)} \right)$$
$$G_{13} = - \hat{K}_{Tx0} \left( {\cos \left( {2a} \right)/\left( {6\sin \left( {2a} \right)} \right) - \left( {4\cos \left( a \right)} \right)/\left( {3\sin \left( a \right)} \right)} \right)$$
$$G_{14} = - \hat{K}_{Tx0} \left( {4/\left( {3\sin \left( a \right)} \right) - 1/\left( {6\sin \left( {2a} \right)} \right)} \right)$$
$$G_{21} = - \hat{K}_{Txa} (\sin (2a)/6 - \sin (a)/3 + \cos (2a)^{2} /(6\sin (2a)) - \cos (a)^{2} /(3\sin (a)))$$
$$G_{22} = \hat{K}_{Txa} \left( {\cos \left( {2a} \right)/\left( {6\sin \left( {2a} \right)} \right) - \cos \left( a \right)/\left( {3\sin \left( a \right)} \right)} \right){-}1 - \eta i$$
$$G_{23} = - \hat{K}_{Txa} (\sin (2a)/6 - (4\sin (a))/3 + \cos (2a)^{2} /(6\sin (2a)) - (4\cos (a)^{2} )/(3\sin (a)))$$
$$G_{24} = \hat{K}_{Txa} \left( {\cos \left( {2a} \right)/\left( {6\sin \left( {2a} \right)} \right) - \left( {4\cos \left( a \right)} \right)/\left( {3\sin \left( a \right)} \right)} \right)$$
$$G_{31} = \left( {1 + \eta i} \right) \, \left( {\cos \left( a \right)/\left( {3\sin \left( a \right)} \right) \, - \, \left( {2\cos \left( {2a} \right)} \right)/\left( {3\sin \left( {2a} \right)} \right)} \right)$$
$$G_{32} = \, \left( {1 + \eta i} \right) \, \left( {2/\left( {3\sin \left( {2a} \right)} \right) \, - \, 1/\left( {3\sin \left( a \right)} \right)} \right)$$
$$G_{33} = \hat{K}_{Ry0} - \left( {1 + \eta i} \right)\left( {\left( {2\cos \left( {2a} \right)} \right)/\left( {3\sin \left( {2a} \right)} \right) + \left( {4\cos \left( a \right)} \right)/\left( {3\sin \left( a \right)} \right)} \right)$$
$$G_{34} = \left( {1 + \eta i} \right) \, \left( {2/\left( {3\sin \left( {2a} \right)} \right) - 4/\left( {3\sin \left( a \right)} \right)} \right)$$
$$G_{41} = (1 + \eta i)((2\sin (2a))/3 - \sin (a)/3 + (2\cos (2a)^{2} )/(3\sin (2a)) - \cos (a)^{2} /(3\sin (a)))$$
$$G_{42} = \left( {1 + \eta i} \right) \, \left( {\cos \left( a \right)/\left( {3\sin \left( a \right)} \right) - \left( {2\cos \left( {2a} \right)} \right)/\left( {3\sin \left( {2a} \right)} \right)} \right)$$
$$G_{{43}} = (1 + \eta i)((2\sin \,(2a))/3 - (4\sin \,(a))/3 + (2\cos \,(2a)^{2} )/(3\sin \,(2a)) - (4\cos \,(a)^{2} )/(3\sin \,(a)))$$
$$G_{44} = \hat{K}_{Ryb} - \left( {1 + \eta i} \right) \, \left( {\left( {2\cos \left( {2a} \right)} \right)/\left( {3\sin \left( {2a} \right)} \right) + \left( {4\cos \left( a \right)} \right)/\left( {3\sin \left( a \right)} \right)} \right)$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, K., Panigrahi, S.K. Dynamic Response and Vibration Power Flow Analysis of Rectangular Isotropic Plate Using Fourier Series Approximation and Mobility Approach. J. Vib. Eng. Technol. 8, 105–119 (2020). https://doi.org/10.1007/s42417-018-0079-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-018-0079-3

Keywords

Navigation