Skip to main content
Log in

Damped Vibration Absorbers for Multi-mode Longitudinal Vibration Control of a Hollow Shaft

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Objective

The present work adopted damped vibration absorbers (DVAs) to attenuate multi-mode longitudinal vibration of the hollow shaft. The dynamic behavior of a shaft is analyzed for the guidance to the initial parameter design of DVAs and the parameters of DVAs are optimized. Subsequently, specific structures of DVAs are designed taking into account the hollow characteristic of the shaft. Furthermore, finite element stimulation of solid modeling has been performed.

Methods

In this work, with the aid of the transfer matrix method (TMM) in conjunction with the substructure synthesis method (SSM), a dynamic model of the shaft incorporating multiple DVAs is established. The proposed method is developed for the calculation of dynamics character of the coupled system and estimation of absorption effectiveness of DVAs.

Simulation

To demonstrate the validity of theoretical result obtained from the TMM proposed in this paper, a simulation of the shaft vibration by means of the finite element method (FEM) is also carried out.

Conclusion

Theoretical and stimulation results both demonstrate that the resonance peaks of the shaft longitudinal vibration are suppressed obviously with the application of those DVAs, which verify the effectiveness of the absorption performance of DVAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pan J, Farag N, Lin T, Juniper R (2002) Propeller induced structural vibration through the thrust bearing. In: Proceedings of innovation in acoustics and vibration annual conference of the Australian Acoustical Society, Adelaide

  2. Spivack OR, Kinns R, Peake N (2004) Acoustic excitation of hull surfaces by propeller sources. J Mar Sci Tech 9:109–116

    Article  Google Scholar 

  3. Caresta M, Kessissoglou NJ (2010) Acoustic signature of a submarine hull under harmonic excitation. Appl Acoust 71:17–31

    Article  Google Scholar 

  4. Merz S, Kessissoglou NJ, Kinns R (2007) Excitation of a submarine hull by propeller forces. In: Proceedings of the 14th international congress on sound and vibration, Cairns

  5. Merz S, Kinns R, Kessissoglou NJ (2009) Structural and acoustic responses of a submarine hull due to propeller forces. J Sound Vib 325:266–286

    Article  Google Scholar 

  6. Goodwin AJH (1960) The design of a resonance changer to overcome excessive axial vibration of propeller shafting. Inst Mar Eng Trans 72:37–63

    Google Scholar 

  7. Dylejko PG, Kessissoglou NJ (2004) Minimization of the vibration transmission through the propeller-shafting system in a submarine. J Acoust Soc Am 116:25–69

    Article  Google Scholar 

  8. Dylejko PG, Kessissoglou NJ, Tso Y, Norwood CJ (2007) Optimization of a resonance changer to minimize the vibration transmission in marine vessels. J Sound Vib 300:101–116

    Article  Google Scholar 

  9. Dylejko PG (2007) Optimum resonance changer for submerged vessel signature reduction. PhD thesis, University of New South Wales, Sydney

  10. Merz S (2010) Passive and active tunning of a resonance changer for submarine signature reduction. PhD thesis, University of New South Wales, Sydney

  11. Merz S, Kessissoglou NJ, Kinns R, Marburg S (2010) Minimization of the sound power radiated by a submarine through optimization of its resonance changer. J Sound Vib 329:980–993

    Article  Google Scholar 

  12. Jacquot R (2001) Suppression of random vibrations in plates using vibration absorbers. J Sound Vib 248:585–596

    Article  Google Scholar 

  13. Cuvalci O, Ertas A (1996) Pendulum as vibration absorber for flexible structures: experiments and theory. J Vib Acoust 118:558–566

    Article  Google Scholar 

  14. Yau J (2007) Train-induced vibration control of simple beams using string-type tuned mass dampers. J Mech 23:329–340

    Article  Google Scholar 

  15. Yilmaz C, Kikuchi N (2006) Analysis and design of passive band-stop filter-type vibration isolators for low-frequency applications. J Sound Vib 291:1004–1028

    Article  Google Scholar 

  16. Bartnicki J, Pater Z (2005) Numerical simulation of three-rolls cross-wedge rolling of hollowed shaft. J Mater Process Tech 164–165:1154–1159

    Article  Google Scholar 

  17. Zhou R, Jiang Y, Guan WS (2011) Calculation method of ship propulsion shafting longitudinal vibration and influencing factors. Chin J Ship Res 6:17–22

    Google Scholar 

  18. Acar MA, Yilmaz C (2013) Design of an adaptive–passive dynamic vibration absorber composed of a string–mass system equipped with negative stiffness tension adjusting mechanism. J Sound Vib 332:231–245

    Article  Google Scholar 

  19. Ernst FG (1974) Rubber springs design. Wiley, London

    Google Scholar 

  20. Den Hartog JP (1985) Mechanical vibrations. Dover Publications, New York

    MATH  Google Scholar 

  21. Ashory MR, Najafi M, Jamshidi E (2012) Optimal design of a damped vibration absorber using genetic algorithm. Adv Vib Eng 11(1):47–58

    Google Scholar 

  22. Xu ZB, Gong XL, Chen XM (2011) Development of a mechanical semi-active vibration absorber. Adv Vib Eng 10(3):229–238

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities and Funding of Jiangsu Innovation Program for Graduate Education (Grant No. KYLX_0242) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zhao.

Appendix

Appendix

The transfer matrices of various elements in Sect. 3 are given as

$$ {\mathbf{U}}_{{{\mathbf{0,}}i}} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{i} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{i} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{i} } \right)} {\left( {{\text{EA}}_{i} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {{\text{EA}}_{i} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{i} \frac{\omega }{a}\sin \frac{\omega }{a}l_{i} } & \quad {\cos \frac{\omega }{a}l_{i} } & \quad 1 \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right] $$
(43)
$$ {\mathbf{U}}_{{{\mathbf{0,}}k}} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{k} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{k} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{k} } \right)} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{k} \frac{\omega }{a}\sin \frac{\omega }{a}l_{k} } & \quad {\cos \frac{\omega }{a}l_{k} } & \quad 0 \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right]\quad k = 1,2, \ldots ,i - 1,i + 1, \ldots ,p $$
(44)
$$ {\mathbf{U}}_{{{\mathbf{F}}_{0} {\mathbf{,}}j}} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{j} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{j} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{j} } \right)} {\left( {{\text{EA}}_{j} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {{\text{EA}}_{j} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{j} \frac{\omega }{a}\sin \frac{\omega }{a}l_{j} } & \quad {\cos \frac{\omega }{a}l_{j} } & \quad {F_{0} } \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right] $$
(45)
$$ {\mathbf{U}}_{{{\mathbf{F}}_{{\mathbf{0}}} {\mathbf{,}}k}} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{k} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{k} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{k} } \right)} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{k} \frac{\omega }{a}\sin \frac{\omega }{a}l_{k} } & \quad {\cos \frac{\omega }{a}l_{k} } & \quad 0 \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right]\quad \left( {k = 1,2, \ldots ,j - 1,j + 1, \ldots ,p} \right) $$
(46)
$$ {\mathbf{U}}_{k} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{k} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{k} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{k} } \right)} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{k} \frac{\omega }{a}\sin \frac{\omega }{a}l_{k} } & \quad {\cos \frac{\omega }{a}l_{k} } & \quad 0 \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right]\,\left( {k = 1,2, \ldots ,i} \right) $$
(47)
$$ {\mathbf{U}}_{{{\mathbf{P,}}i}} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{i} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{i} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{i} } \right)} {\left( {{\text{EA}}_{i} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {{\text{EA}}_{i} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{i} \frac{\omega }{a}\sin \frac{\omega }{a}l_{i} } & \quad {\cos \frac{\omega }{a}l_{i} } & \quad P \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right] $$
(48)
$$ {\mathbf{U}}_{{{\mathbf{P,}}k}} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{k} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{k} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{k} } \right)} {\left( {EA_{k} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {EA_{k} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{k} \frac{\omega }{a}\sin \frac{\omega }{a}l_{k} } & \quad {\cos \frac{\omega }{a}l_{k} } & \quad 0 \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right]\quad \left( {k = 1,2, \ldots ,i - 1,i + 1, \ldots ,p} \right) $$
(49)
$$ {\mathbf{U}}_{{{\mathbf{P}}_{{\mathbf{j}}} {\mathbf{,}}k}} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{k} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{k} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{k} } \right)} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{k} \frac{\omega }{a}\sin \frac{\omega }{a}l_{k} } & \quad {\cos \frac{\omega }{a}l_{k} } & \quad 0 \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right]\quad \left( {k = 1,2, \ldots ,i_{{P_{j - 1} }} ,i_{{P_{j + 1} }} , \ldots ,p} \right) $$
(50)
$$ {\mathbf{U}}_{{{\mathbf{F}}_{0} {\mathbf{,}}t}} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{t} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{t} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{t} } \right)} {\left( {{\text{EA}}_{t} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {{\text{EA}}_{t} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{t} \frac{\omega }{a}\sin \frac{\omega }{a}l_{t} } & \quad {\cos \frac{\omega }{a}l_{t} } & \quad {F_{0} } \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right]_{{}} $$
(51)
$$ {\mathbf{U}}_{{{\mathbf{F}}_{{\mathbf{0}}} {\mathbf{,}}k}} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{k} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{k} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{k} } \right)} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{k} \frac{\omega }{a}\sin \frac{\omega }{a}l_{k} } & \quad {\cos \frac{\omega }{a}l_{k} } & \quad 0 \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right]\quad \left( {k = 1,2, \ldots ,t - 1,t + 1, \ldots ,p} \right) $$
(52)
$$ {\mathbf{U}}_{{{\mathbf{P,}}i_{{P_{k} }} }} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{{i_{{P_{k} }} }} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{{i_{{P_{k} }} }} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{{i_{{P_{k} }} }} } \right)} {\left( {{\text{EA}}_{{i_{{P_{k} }} }} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {{\text{EA}}_{{i_{{P_{k} }} }} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{{i_{{P_{k} }} }} \frac{\omega }{a}\sin \frac{\omega }{a}l_{{i_{{P_{k} }} }} } & \quad {\cos \frac{\omega }{a}l_{{i_{{P_{k} }} }} } & \quad {P_{{i_{{P_{k} }} }} } \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right]\quad \left( {k = 1,2, \ldots ,n} \right) $$
(53)
$$ {\mathbf{U}}_{{{\mathbf{P,}}k}} = \left[ {\begin{array}{*{20}c} {\cos \frac{\omega }{a}l_{k} } & \quad {{{\left( {\sin \frac{\omega }{a}l_{k} } \right)} \mathord{\left/ {\vphantom {{\left( {\sin \frac{\omega }{a}l_{k} } \right)} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} \right. \kern-0pt} {\left( {{\text{EA}}_{k} \frac{\omega }{a}} \right)}}} & \quad 0 \\ { - {\text{EA}}_{k} \frac{\omega }{a}\sin \frac{\omega }{a}l_{k} } & \quad {\cos \frac{\omega }{a}l_{k} } & \quad 0 \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right]\quad \left( {k = 1,2, \ldots ,p\;{\text{and}}\;k \ne i_{{P_{1} }} ,i_{{P_{2} }} , \ldots ,i_{{P_{n} }} } \right). $$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Chen, Q. & Yao, B. Damped Vibration Absorbers for Multi-mode Longitudinal Vibration Control of a Hollow Shaft. J. Vib. Eng. Technol. 6, 1–12 (2018). https://doi.org/10.1007/s42417-018-0002-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-018-0002-y

Keywords

Navigation