Skip to main content
Log in

Effect of Titanium and Vanadium on Nanomullite Derived from Diphasic Precursor Gel

  • Research and Development
  • Refractories
  • Published:
Interceram - International Ceramic Review

Abstract

To process mullite ceramics, diphasic aluminosilicate gel was synthesized from inorganic salts by employing the sol-gel route. The process of mullitization was studied by FTIR, DTA and SEM analysis. The particle size of the mullite ceramics was found to be in the nanometer range. The gel was calcined at 800°C. To the calcined gel, oxides of titanium and vanadium were mixed separately. The powder masses were compacted at 100 MPa pressure and then sintered at different elevated temperatures. The mechanical and microstructural properties of the doped samples were studied, and it was found that both the oxides influenced the process of mullitization positively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aksay, I.A., Pask, J.A.: Stable and metastable equilibria in system SiO2-Al2O3.J. Eur. Ceram. Soc. 58 (1975) 507–512.

    Article  CAS  Google Scholar 

  2. Klug, F.J., Prochazka, S.: Doremus, R.H. Alumina-silica phase diagram in the mullite region. J. Am. Ceram. Soc. 70 (1987) 750–759.

    Article  CAS  Google Scholar 

  3. Schneider, H., Eberhard, E.: Thermal expansion of mullite.J. Am. Ceram. Soc. 73 (1990) 2073–2076.

    Article  CAS  Google Scholar 

  4. Hynes, A.P., Doremus, R.H.: High-temperature compressive creep of polycrystalline mullite. J. Am. Ceram. Soc. 74 (1991) 2469–2475.

    Article  CAS  Google Scholar 

  5. Kollenberg, W., Schneider, H.: Microhardness of mullite at temperatures to 1000 °C. J. Am. Ceram. Soc. 72 (1989) 1739–1740.

    Article  CAS  Google Scholar 

  6. Aksay, A., Dabbs, D.M., Sarikaya, M.: Mullite for structural, electronic and optical applications. J. Am. Ceram. Soc. 74 (1991)2343–2358.

    Article  CAS  Google Scholar 

  7. Skoog, A.J., Moore, R. E.: Refractory of the past for the future: mullite and its use as a bonding phase. Am. Ceram. Soc. Bull. 67 (1988)1180–1185.

    CAS  Google Scholar 

  8. Ramakrishnan, V., Goo, E., Roldan, J.M., Giess, E.A.: Microstructure of mullite ceramics used for substrate and packaging applications. J. Mater. Sci. 27 (1992) 6127–6130.

    Article  CAS  Google Scholar 

  9. Mazel, F., Gonon, M., Fantozzi, G.: Manufacture of mullite substrates from andalusite for the development of thin film solar cells. J. Eur. Ceram. Soc. 22 (2002) 453–461.

    Article  CAS  Google Scholar 

  10. Shinohara, N., Dabs, D.M., Aksay, I.A.: Infrared transparent mullite through densification of monolithic gels at 1250 °C. Proc. SPIE—Int. Soc. Opt. Eng. 83 (1986) 19–24.

    Google Scholar 

  11. Cividanes, L.S., Campos, T.M.B., Rodrigues, L.A., Brunelli, D.D.: Thim, G.P. Review of mullite synthesis routes by solgel method. J. Sol-Gel Sci. Technol. 55 (2010) 111–125.

    Article  CAS  Google Scholar 

  12. Padmaja, P., Anilkumar, G.M., Warrier, K.G.K.: Characterization of stoichiometric sol-gel mullite by fourier transform infrared spectroscopy. Int. J. Inorg. Mater.3(2001) 693–698.

    Article  CAS  Google Scholar 

  13. Yu, J., Shi, J., Yuan, Q., Yang, Z., Chen, Y.: Effect of composition on the sintering and microstructure of diphasic mullite gels, Ceram. Int. 26 (2000) 255–263.

    Article  CAS  Google Scholar 

  14. Campos, A.L., Silva, N.T., Melo, F.C.L., Oliveira, M.A.S., Thim, G.P.: Crystallization kinetics of orthorhombic mullite from diphasic gels. J. Non-Cryst. Solids. 304 (2002) 19–24.

    Article  CAS  Google Scholar 

  15. Buljan, I., Kosanovic, C., Kralj, D.: Novel synthesis of nanosized mullite from aluminosilicate precursors. J. Alloy. Comp. 509 (2011) 8256–8261.

    Article  CAS  Google Scholar 

  16. Roy, J., Maitra, S.: Synthesis and Characterization of Sol-Gel-Derived Chemical Mullite. J. Ceram. Sci. Tech. 5 (2014) 57–62.

    Google Scholar 

  17. Murkhy, M. K., Hummel, F. A.: X-ray study of the solid solution of TiO2, Fe2O3, and Cr2O3 in mullite (3Al2O3•2SiO2). J. Am. Ceram. Soc. 43 (1960) 267–273.

    Article  Google Scholar 

  18. Baudin, C., Moya, J. S.: Influence of titanium dioxide on the sintering and microstructural evolution of mullite. J. Am. Ceram.Soc. 67 (1984) c–134–136.

    Google Scholar 

  19. Naga, S. M., El-Maghraby, A.: Preparation and characterization of porous fibrous mullite bodies with TiO2. Mater. Charact. 62 (2011) 174–180.

    Article  CAS  Google Scholar 

  20. Zhang, J., Wu, H., Zhang, S., Yu, J., Xiao, H.: Anisotropic grain growth in diphasic-gel-derived vanadium pentoxide doped mullite. J. Cryst. Growth. 364 (2013) 11–15.

    Article  CAS  Google Scholar 

  21. Roy, J., Bandyopadhyay. N., Das, S., Maitra, S.: Effect of TiO2 on the formation of mullite ceramics from diphasic Al2O3-SiO2 gel. Interceram 03–04 (2010) 213–217.

    Google Scholar 

  22. Roy, J., Bandyopadhyay. N., Das, S., Maitra, S.: Role of V2O5 on the formation of chemical mullite from aluminosilicate precursor. Ceram. Int. 36 (2010) 1603–1608.

    Article  CAS  Google Scholar 

  23. Roy, J., Bandyopadhyay. N., Das, S., Maitra, S.: Studies on the formation of mullite from diphasic Al2O3-SiO2 Gel by Fourier Transform Infrared Spectroscopy. Iran. J. Chem. Chem. Eng. 30 (2011) 65–71.

    CAS  Google Scholar 

  24. Okada, K.: Activation energy of mullitization from various starting materials, J. Eur. Ceram. Soc. 28 (2008) 377–382.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagannath Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, J., Maitra, S. Effect of Titanium and Vanadium on Nanomullite Derived from Diphasic Precursor Gel. Interceram. - Int. Ceram. Rev. 67, 22–29 (2018). https://doi.org/10.1007/s42411-018-0036-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42411-018-0036-x

Keywords

Navigation