Skip to main content
Log in

Development of Perovskite Barium Titanate by an Agate Mortar Mill Activated Solid-State Process

  • Research and Development
  • Electroceramics
  • Published:
Interceram - International Ceramic Review

Abstract

Perovskite barium titanate synthesis was carried by modified hand-mill activated solid-state processing followed by annealing in air atmosphere with oxide precursors of barium oxide, titania at 1300 °C for 4 h after 2 h of hand-on mill activation. Phase analysis by XRD confirmed perovskite barium titanate and crystallite size estimation was observed to be about 76 nm. Homogenous growth of various agglomerates was observed, and bonding information of Ti-O, O-Ti-O stretching vibrations validates phases generated from FTIR analysis. The band gap was estimated to be about 3.38 eV from UV-VIS spectra using the Tauc formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Miclea, C., Tanasoiu, C., Spanulescu, I., Anulescu, S.P., Miclea, C.F., Gheorghiu, A., Amarande, L.M., Cioangher, M., Miclea, C.T.: Microstructure and properties of barium titanate ceramics prepared by mechanochemical synthesis. Rom. J. Inf. Sci. Tech. 10 (2007) 335–345

    Google Scholar 

  2. Fang, Liu Shi, Abothu, R.I., Komarneni, Sridhar: Barium titanate ceramics prepared from conventional and microwave hydrothermal powders. Mater. Lett. 38 (1999) 344–350

    Article  Google Scholar 

  3. Joshi, N.J., Grewal, G.S., Shrinet, V., Pratap, A., Buch, N.J.: Synthesis and characterization of nano-barium titanate prepared by hydrothermal process. Integr. Ferroelectr. 115 (2010) 142–148

    Article  CAS  Google Scholar 

  4. Ashiri, R.: Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process. Vib. Spectrosc. 66 (2013) 24–29

    Article  CAS  Google Scholar 

  5. Cai Wei, Fu Chunlin, Gao Jiacheng, Guo Qian., Deng Xiaoling, Zhang Chaoyang: Preparation and optical properties of barium titanate thin films. Physica B 406 (2011) 3583–3587

    Article  CAS  Google Scholar 

  6. Wodecka-DuŚ, B., Czekaj, D.: Fabrication and dielectric properties of donor doped BaTiO3 Ceramics. Arch. Metall. Mater. 54 (2009) 923–933

    Google Scholar 

  7. Arlt, G., Hennings, D., With, G.D.: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58 (1985) 1619–1625

    Article  CAS  Google Scholar 

  8. Frey, M.H., Payne, D.A.: Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54 (1996) 3158–3168

    Article  CAS  Google Scholar 

  9. Sakabe, Y., Wada, N., Hamaji, Y.: Grain size effect on dielectric properties and crystal structure of fine-grained BaTiO3 ceramics. J. Korean Phys. Soc. 32 (1998) S260–S264

    CAS  Google Scholar 

  10. Uchino, K., Sadanaga, E., Hirose, T.: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72 (1989) [8] 1555–1558

    Article  CAS  Google Scholar 

  11. Kareiva, A., Tautkus, S., Rapalaviciute, R.: Sol-Gel synthesis and characterization of barium titanate powders. J. Mater. Sci. 34 (1999) 4853–4857

    Article  CAS  Google Scholar 

  12. Atiar Rahaman Molla, Anal Tarafder, Basudeb Karmakar: Fabrication and properties of Nd3+-doped ferroelectric barium bismuth titanate glass-ceramic nanocomposites. J. Alloy Compd. 680 (2016) 237–246

    Article  CAS  Google Scholar 

  13. Liu Weiliang, Wang Xinqiang, Tian Dong, Xiao Chenglong, Wei Zengjiang, Chen Shouhua: Chemical reaction and crystalline procedure of bismuth titanate nanoparticles derived by metalorganic decomposition technique. Mater. Sci. Applicat. 1 (2010) 91–96

    Google Scholar 

  14. Mukherjee, S., Ghosh, S., Das, C.G., Mitra, K.M.: Mechanochemical synthesis of barium titanate and Mn doped barium titanate. Interceram 62 (2013) [1] 45–49

    CAS  Google Scholar 

  15. Mukherjee, S., Ghosh, S., Ghosh, C., Mitra, K.M.: Synthesis and characterization of iron doped nano barium titanate through mechanochemical route. J. Institut. Engineers (India): Series D, 94 (2013) 57–64, DOI 10.1007/s40033-013-0019-z

    Article  Google Scholar 

  16. Adak, M.A., Mukherjee, S., Ghosh, C., Mukherjee, Sid.: Phase evolution, microscopic analysis, optical and dielectric property evaluation of Co-doped BaSnO3 by mechanical mix assisted solid-state sintering method. AIMS Mater. Sci. 3 (2016) [3] 1281–1293

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to thank Dr. Sathi Banerjee, Department of Metallurgy and Materials Engineering, Jadavpur University, for providing the XRD facility and Dr. Kalyan Kumar Chattyapodhyay, Jadavpur University, for providing the FESEM and HRTEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahnawaz, M., Khan, S. & Mukherjee, S. Development of Perovskite Barium Titanate by an Agate Mortar Mill Activated Solid-State Process. Interceram. - Int. Ceram. Rev. 67, 44–47 (2018). https://doi.org/10.1007/s42411-018-0020-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42411-018-0020-5

Keywords

Navigation