Skip to main content
Log in

Synthesis and Characterization of Iron Doped Nano Barium Titanate Through Mechanochemical Route

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Mechanochemical activation was used to prepare Fe doped barium titanate with intense milling in high energy planetary ball mill. Calcination was done at 1250°C for 30 min to obtain BaO, followed by milling with titania, at 400 rpm for 3 and 6 h. Ferric oxide was used for Fe doping. Annealing was done on the milled sample at 650, 750 and 850 °C for 3 and 6 h to generate stoichiometric compound of barium titanate phase. Fe doped barium titanate results in dense cluster of irregular polygonal shape morphology while morphology was spherical in nature for undoped sample. UV–VIS spectra analysis was carried out to determine bandgap (3.93 eV for undoped BT and 3.88 eV for Fe doped BT) followed by emission–excitation of the sample by fluorometric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.T. Benlahrache, S.E. Barama, N. Benhamla, S. Achour, Influence of polarization electric field on the dielectric properties of BaTiO3-based ceramics. Mater. Sci. Semicond. Process. 9, 1115–1118 (2006)

    Article  Google Scholar 

  2. S.W. Ding, G. Jia, J. Wang, Z.Y. He, Electric properties of Y and Mn doped BaTiO3-based PTC ceramics. Ceram. Int. 34, 2007–2010 (2008)

    Article  Google Scholar 

  3. T. Li, L. Li, J. Zhao, Z. Gui, Modulation effect of Mn+2 on dielectric properties of BaTiO3-based X7R materials. Mater. Lett. 44, 1–5 (2000)

    Article  Google Scholar 

  4. H. Kishi, N. Kohzu, Y. Iguchi, J. Sugino, M. Kato, H. Ohsata, T. Okuda, Occupational sites and dielectric properties of rare-earth and Mn substituted BaTiO3. J. Eur. Ceram. Soc. 21, 1643–1647 (2001)

    Article  Google Scholar 

  5. L.X. Zhang, X. Ren, Electro-shape-memory effect in Mn-doped BaTiO3 single crystals and in situ observation of the reversible domain switching. Mater. Sci. Eng., A 438–440, 354–359 (2006)

    Google Scholar 

  6. H.T. Langhammer, T. Müller, A. Polity, K.H. Felgner, H.P. Abicht, On the crystal and defect structure of manganese-doped barium titanate ceramics. Mater. Lett. 26, 205–210 (1996)

    Article  Google Scholar 

  7. G.M. Keith, M.J. Rampling, K. Sarma, N.M. Alford, D.C. Sinclair, Synthesis and characterisation of doped 6H-BaTiO3 ceramics. J. Eur. Ceram. Soc. 24, 1721–1724 (2004)

    Article  Google Scholar 

  8. O.P. Thakur, A. Feteira, B. Kundys, D.C. Sinclairs, Influence of attrition milling on the electrical properties of undoped-BaTiO3. J. Eur. Ceram. Soc. 27, 2577–2589 (2007)

    Article  Google Scholar 

  9. E. Duverger, B. Jannot, M. Maglione, M. Jannin, Electrical transport properties of Mn and Ni doped barium titanate at high temperature. Solid State Ionics 73, 139–145 (1994)

    Article  Google Scholar 

  10. Y.H. Lu, H.M. Lin, Charge compensation mechanism in yttria-doped barium titanate. Ceram. Int. 31, 989–997 (2005)

    Article  Google Scholar 

  11. C. Pithan, D. Hennings, R. Waser, Progress in the synthesis of nanocrystalline BaTiO3 Powders for MLCC. Int. J. Appl. Ceram. Technol. 2(1), 1–14 (2005)

    Article  Google Scholar 

  12. M.M. Vijatovic, J.D. Bobic, B.D. Stojanovic, History and challenges of barium titanate. Part I. Sci. Sinter. 40, 155–165 (2008)

    Article  Google Scholar 

  13. X. Wang, M. Gu, B. Yang, S. Zhu, W. Cao, Hall effect and dielectric properties of Mn-doped barium titanate. Microelectron. Eng. 66, 855–859 (2003)

    Article  Google Scholar 

  14. T.K. Kundu, A. Jana, P. Barik, Doped barium titanate nanoparticles. Bull. Mater. Sci. 31(3), 501–505 (2008)

    Article  Google Scholar 

  15. A. Jana, T.K. Kundu, Microstructure and dielectric characteristics of Ni ion doped BaTiO3 nanoparticles. Mater. Lett. 61, 1544–1548 (2007)

    Article  Google Scholar 

  16. O. Harizanov, A. Harizanova, T. Ivanova, Formation and characterization of sol–gel barium titanate. Mater. Sci. Eng., B 106, 191–195 (2004)

    Article  Google Scholar 

  17. T. Sahoo, G.K. Pradhan, M.K. Rath, B. Pandey, H.C. Verma, S. Nandy, K.K. Chattopadhay, S. Anand, Characterization and photoluminescence studies on hydrothermally synthesized Mn-doped barium titanate nano powders. Mater. Lett. 61, 4821–4823 (2007)

    Article  Google Scholar 

  18. M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, Influence of foreign ions on the crystal structure of BaTiO3. J. Eur. Ceram. Soc. 20, 1997–2007 (2000)

    Article  Google Scholar 

  19. T. Sahoo, S.K. Tripathy, S. Nandy, B. Pandey, H.C. Verma, K.K. Chattopadhay, S. Anand, Microstructural and photo luminescence studies on hydrothermally synthesized Ce-doped barium titanate nanocrystals. Mater. Sci. Eng., B 131, 277–280 (2006)

    Article  Google Scholar 

  20. M.S. Zhang, J. Yu, W.C. Chun, Z. Yin, Optical and structural properties of pure and Ce-doped nanocrystals of barium titanate. Prog. Cryst. Growth Charact. Mater. 40(1–4), 33–42 (2000)

    Article  Google Scholar 

  21. S. Arvids, C. Darwin, Simulation of iron impurity in BaTiO3 crystals. Physica B 404, 1571–1575 (2009)

    Article  Google Scholar 

  22. Z. Miodrag, J. Cedomir, P. Dejan, V. Ivana, K. Ljiljana, Mechanically induced amorphous/crystalline phase transition in the Bi4Ti3O12 compound. Mater. Lett. 63, 2542–2544 (2009)

    Article  Google Scholar 

  23. O. Satoshi, A. Kondo, S. Hirofumi, S. Kazuyoshi, A. Hiroya, N. Makio, Rapid mechanochemical synthesis of fine barium titanate nanoparticles. Mater. Lett. 62, 2957–2959 (2008)

    Article  Google Scholar 

  24. B.D. Stojanovic, A.Z. Simoes, C.O. Paiva-Santos, V. Jovalekic, V.V. Mitic, J.A. Varela, Mechanochemical synthesis of barium titanate. J. Eur. Ceram. Soc. 25, 1985–1989 (2005)

    Article  Google Scholar 

  25. B.D. Stojanovic, C. Jovalekic, V. Vukotic, A.Z. Simoes, J.A. Varela, Ferroelectric properties of mechanically synthesized nanosized barium titanate. Ferroelectrics 319, 65–73 (2005)

    Article  Google Scholar 

  26. K. Park, J.G. Kim, K.J. Lee, W.S. Cho, W.S. Hwang, Electrical properties and microstructure of Y-doped BaTiO3 ceramics prepared by high-energy ball-milling. Ceram. Int. 34, 1573–1577 (2008)

    Article  Google Scholar 

  27. R. Vijayalakshmi, V. Rajendran, Synthesis and characterization of cubic BaTiO3 nanorods via facile hydrothermal method and their optical properties. Dig. J. Nanomater Biostruct 5(2), 511–517 (2010)

    Google Scholar 

  28. L.B. Kong, T.S. Zhang, J. Ma, F. Boey, Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Prog. Mater Sci. 53(2008), 207–322 (2008)

    Article  Google Scholar 

  29. B. Panda, A. Dhar, G.D. Nigam, D. Bhattacharya, S.K. Ray, Optical properties of RF sputtered strontium substituted barium titanate thin films. Thin Solid Films 332, 46–49 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Department of Metallurgical & Material Engineering and School of Material Science & Nanotechnology, Jadavpur University for providing the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Ghosh, S., Ghosh, C. et al. Synthesis and Characterization of Iron Doped Nano Barium Titanate Through Mechanochemical Route. J. Inst. Eng. India Ser. D 94, 57–64 (2013). https://doi.org/10.1007/s40033-013-0019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-013-0019-z

Keywords

Navigation