Skip to main content
Log in

Review on guidance and control of aerospace vehicles: recent progress and prospect

  • Review
  • Published:
Aerospace Systems Aims and scope Submit manuscript

Abstract

This paper expounds on the development status and relevant works of control and guidance methods of the aerospace vehicle in recent years. The control difficulties and the solutions in the related results are introduced briefly. Moreover, the guidance methods are then expounded in detail according to the flight phases of the whole flight mission. Guidance methods are usually included in each phase, and the corresponding trajectory design theories are also introduced where necessary. In addition, the potential future development direction prospects. Based on the above, a brief conclusion is then made as a summary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang Z, Hu L, Fei W, Zhou D, Yang D, Ma C, Gong Z, Wu J, Zhang C, Yang Y (2023) High-performance attitude control design of supersonic tailless aircraft: a cascaded disturbance rejection approach. Aerospace 10(2):198

    Article  Google Scholar 

  2. (2011) Conceptual design of aerospace vehicle. Encyclopedic Knowledge. 470(18):2–68

  3. Steelant J, Langener T, Hannemann K et al (2015) Conceptual design of the high-speed propelled experimental flight test vehicle HEXAFLY. In: 20th AIAA international space planes and hypersonic systems and technologies conference. p 3539

  4. Olds J R, Budianto IA (1998) Constant dynamic pressure trajectory simulation with POST. In: 36th Aerospace Sciences Meeting & Exhibit Reno, NV12–15 January

  5. Young D A, Kokan TC, Lark L et al (2006) Lazaru: SSTO aerospace vehicle concept utilizing RBCC and-HEDM propulsion technologies[C].14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, Canberra, Austalia

  6. Kodera M, Ogawa H, Tomioka S et al (2014) Multi-objective design and trajectory optimization of space transport system with RBCC Propulsion via Evolutionary Algorithms and Pseudospectral Methods. In: 52nd AIAA Aerospace Sciences Meeting National Harbor, Maryland, 13–17 January 2014

  7. Ogawa H, Kodera M, Tomioka S et al (2014) Multi-phase trajectory optimization for access-to-space with RBCC-Powered TSTO via Surrogated-Assisted Hybrid Evolutionary Algorithms Incorporation Pseudo-Spectral Methods[C].19th AIAA International Space and Hypersonic Systems and Technologies Conference, AtlantGA, 16–20 June, 2014

  8. Wang H, He G, Liu P (2006) Trajectory and mass analysis of RBCC-powered cruise vehicles. J Northwest Polytech Univ 24(6):774–7772

    Google Scholar 

  9. Zhan H, Sun D, Deng Y (2008) Study on the calculation of flight trajectory of air breathing reusable launch vehicle. Flight Dyn 26(2):20–23

    Google Scholar 

  10. Tian X, Neng H (2009) Preliminary design for air breathing reusable launch vehicle. Aeronaut Comput Techn 39(4):61–64

    Google Scholar 

  11. Lu X, He G, Liu P (2010) Ascent trajectory design method for RBCC-powered vehicle. Chin J Aeronaut 31(7):1331–1337

    Google Scholar 

  12. Xue R, Hu C, Lu X (2013) RBCC constant dynamic pressure booster trajectory design and propellant mass flowrate analysis for TSTO transportation system. J Solid Rocket Technol 36(2):155–160

    ADS  Google Scholar 

  13. Yan X, Jia X, Lu S (2013) An ascent trajectory design method with constant dynamic pressure for RBCC-powered vehicle. J Solid Rocket Technol 36(6):711–714

    Google Scholar 

  14. Jia X, Yan X (2015) Ascent trajectory design method for air-breathing powered propulsion system. J Northwest Polytech Univ 33(1):104–109

    MathSciNet  ADS  Google Scholar 

  15. Li X, Liu C, Wang Z (2012) Trajectory optimization for maximizing cruise range of air-breathing hypersonic missile. Acta Armamentarii 33(3):290–294

    Google Scholar 

  16. Ruan J, He G, Lu X (2014) Trajectory optimization method in two-stage-to-orbit RBCC—RKT launch vehicle. Chin J Aeronaut 35(5):1284–1291

    Google Scholar 

  17. Gong C, Han L (2012) Optimization of ascent trajectory for RBCC-powered RLV. J Solid Rocket Technol 35(3):290–295

    Google Scholar 

  18. Gong C, Han L, Gu L (2013) Research on modeling of trajectory optimization for RBCC-powered RLV. Chin J Aeronaut 34(12):1592–1598

    Google Scholar 

  19. Gong C, Chen B, Gu L (2014) Design and optimization of RBCC powered suborbital reusable launch vehicle. In: 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference Atlanta, GA, 16–20 June, 2014

  20. Gong C, Chen B, Gu L (2015) Comparison study of RBCC powered suborbital reusable launch vehicle concepts. In: 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference Glasgow. Scotland. 6–9-July 2015

  21. Zheng D, Liu Z, Yang Y (2018) Research on climb-cruise global trajectory optimization for RBCC aerospace vehicle. Missiles Space Veh 02:1–8

    Google Scholar 

  22. Zhou H, Wang X, Zhao Y (2020) Ascent trajectory optimization for a multi-combined-cycle-based launch vehicle using a hybrid heuristic algorithm. Chin J Aeronaut 41(1):61–70

    CAS  Google Scholar 

  23. Lu K, Xia Y, Zhu Z et al (2012) Sliding mode attitude tracking of rigid spacecraft with disturbances. J Franklin Inst 349(2):413–440

    Article  MathSciNet  Google Scholar 

  24. Bauer W, Rickmers P, Kallenbach A et al (2020) DLR reusability flight experiment ReFEx. Acta Astronaut 168:57–68

    Article  ADS  Google Scholar 

  25. Hall C, Gallaher M, Hendrix N (1998) X-33 attitude control system design for ascent, transition, and entry flight regimes. In: Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA

  26. Chai R, Tsourdos A, Savvaris A et al (2021) Review of advanced guidance and control algorithms for space/aerospace vehicles. Prog Aerosp Sci 122:100696

    Article  Google Scholar 

  27. Yibo D, Xiaokui YUE, Guangshan C et al (2022) Review of control and guidance technology on hypersonic vehicle. Chin J Aeronaut 35(7):1–18

    Article  Google Scholar 

  28. Kafer G (1982) Space shuttle entry/landing flight control design description. In: Guidance and Control Conference. Reston: AIAA

  29. Kirsten P (1985) Development of a fuel-saving flight control system for the Space Shuttle based on flight experience. In: Aircraft Design Systems and Operations Meeting. Reston: AlAA

  30. Johnson E, Calise A, El-Shirbiny H et al (2000) Feedback linearization with Neural Network augmentation applied to X-33 attitude control. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA

  31. Lee & Associates, LLC (2000) Support to X-33/ Resusable launch vehicle technology program:20010000337. Washington, D.C.: NASA

  32. Li YX (2017) Deep reinforcement learning: an overview [DB/OL]. arXiv:1701.07274

  33. Shtessel Y, Tournes C, Krupp D et al (1997) Reusable launch vehicle control in sliding modes. In: Guidance, Navigation, and Control Conference. Reston: AIAA

  34. Shtessel Y, Mcduffie J, Jackson M et al (1998) Sliding mode control of the X-33 vehicle in launch and re-entry modes. Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA

  35. Shtessel Y, Hall C, Jackson M (2000) Reusable launch vehicle control in multiple-time-scale sliding modes. J Guid Control Dyn 23(6):1013–1020

    Article  ADS  Google Scholar 

  36. Hall CE, Shtessel YB (2006) Sliding mode disturbance observer-based control for a reusable launch vehicle. J Guid Control Dyn 29(6):13151328

    Article  Google Scholar 

  37. Dutta L, Kumar DD (2022) Nonlinear disturbance observer-based adaptive feedback linearized model predictive controller design for a class of nonlinear systems. Asian J Control 24(5):2505–2518

    Article  Google Scholar 

  38. Accetta A, Cirrincione M, D’Ippolito F et al (2022) Adaptive feedback linearization control of SynRM drives with on-line inductance estimation. IEEE Trans Ind Appl 59(2):1824–1835

    Article  Google Scholar 

  39. Ming D, Shuai M, Shuheng W et al (2022) Neural-network-based adaptive feedback linearization control for 6-DOF wave compensation platform. J Shanghai Jiaotong Univ (Chin Ed) 56(2):165

    Google Scholar 

  40. Zhu J, Banker B, Hall C (2000) X-33 ascent flight control design by trajectory linearization-A singular perturbation approach. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA

  41. Zhu J, Huizenga A (2004) A type two linearization controller for a resuable launch vehicle-A singular perturbation approach. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA

  42. Chirayath BB, Bindu G R. Longitudinal guidance and control of re-entry vehicle in the approach and landing phase. In: 2014 International Conference on Power Signals Control and Computations EPSCICON) Piscataway: IEEE Press, pp 1–5

  43. Shtessel Y, Hall C (2000) Sliding mode control of the X-33 with an engine failure. In: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA

  44. Shtessel YB (2002) Improved Re-configurable sliding mode controller for reusable launch vehicle of second generation addressing aerodynamic surface failures and thrust deficiencies. NASA STI/Recon Tech Rep N 3:05684

    Google Scholar 

  45. Qi D, Zong Q, Tian BL et al (2017) Adaptive-gain multi-variable super-twisting sliding mode control for re-entry RLV with torque perturbation. Int J Robust Nonlinear Control 27(4):620–638

    Article  Google Scholar 

  46. Dong Q, Zong Q, Tian BL et al (2017) Integrated finite time disturbance observer and controller design for re-usable launch vehicle in reentry phase. J Aerosp Eng 30(1):04016076

    Article  Google Scholar 

  47. You M, Zong Q, Tian BL et al (2018) Nonsingular terminal sliding mode control for reusable launch vehicle with atmospheric disturbances. Proc Inst Mech Eng, Part G: J Aerosp Eng 232(11):2019–2033

    Article  Google Scholar 

  48. Zhang L, Wei CZ, Wu R et al (2018) Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle. Aerosp Sci Technol 82:70–79

    Article  Google Scholar 

  49. You M, Zong Q, Tian BL et al (2018) Comprehensive design of uniform robust exact disturbance observer and fixed-time controller for reusable launch vehicles. IET Control Theory Appl 12(5):638–648

    Article  MathSciNet  Google Scholar 

  50. Jiang ZP, Praly L (1998) Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties. Automatica 34(7):825–840

    Article  MathSciNet  Google Scholar 

  51. Khalil HK (1996) Adaptive output feedback control of nonlinear systems represented by input-output models. IEEE Trans Autom Control 48(6):1041–1045

    MathSciNet  Google Scholar 

  52. Aloliwi B, Khalil HK (1997) Robust adaptive output feedback control of nonlinear systems without persistence of excitation. Automatica 33(11):2025–2032

    Article  MathSciNet  Google Scholar 

  53. Sridhar S, Khalil HK (2000) Output feedback control of nonlinear systems using RBF neural networks. IEEE Trans Neural Netw 11(1):69–79

    Article  Google Scholar 

  54. Liu YS, Li XY (2001) Robust adaptive control of nonlinear systems represented by input–output models. IEEE Trans Autom Control 48(6):1041–1045

    MathSciNet  ADS  Google Scholar 

  55. Burken JJ, Lu P, Wu ZL et al (2001) Two reconfigurable flight-control design methods: robust servomechanism and control allocation. J Guid Control Dyn 24(3):482–493

    Article  ADS  Google Scholar 

  56. Hanson J (2000) Advanced guidance and control project for reusable launch vehicles. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA

  57. Scottedwar A (2000) Robust inversion and data compression in control allocation. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA

  58. Hanson J (2000) A plan for advanced guidance and control technology for 2nd generation reusable launch vehicles. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA

  59. Sieberling S, Chu QP, Mulder JA (2010) Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction. J Guid Control Dyn 33(6):1732–1742

    Article  ADS  Google Scholar 

  60. Yang J, Li S, Chen W (2012) Nonlinear disturbance observer-based control for multi-input multi-output nonlinear systems subject to mismatching condition. Int J Control 85(8):1071–1082

    Article  MathSciNet  Google Scholar 

  61. Teng FL et al (2011) Research on attitude control of spacecraft based on ADRC. Adv Mater Res 383–390:358–365

    Article  Google Scholar 

  62. Brinda V, Arora RK, Janardhanae (2005) Mission analysis of a reusable launch vehicle technology demon strator (RLV-TD). In: C7/AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA

  63. Jee G, Sharma KK, Koteswara RK et al (2014) Evolution of attitude control law of an Indian re-entry launch vehicle. J Int J Adv Eng Sci Appl Math 6(3–4):148–157

    Article  Google Scholar 

  64. Haignere J P, Gathier L, Coue P (2006) Vehra SH suborbital manned vehicle. In: 57th International Astronautical Congress

  65. Yan XD, Jia XJ, Lv S (2013) An ascent trajectory design method with constant dynamic pressure for RBCC powered vehicle. Solid Rocket Technol 36(06):711–714

    Google Scholar 

  66. Space Exploration Technologies Crop (2020) SpaceX, Falcon user’s guide (August 2020). In: Hawthorne: SpaceX

  67. Lu P, Sun HS, Tsai B (2003) Closed-loop do atmospheric ascent guidance. J Guid Control Dyn 26(2):283–294

    Article  ADS  Google Scholar 

  68. Dukeman G, Calise A (2003) Enhancements to an atmospheric ascent guidance algorithm. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA

  69. Chunzhen S, Yimin H, Suofeng G (2005) Design of longitudinal guidance and control system for automatic landing of reusable transatmospheric vehicle. In: The 11th Academic Exchange of Aircraft Control and Control of Chinese Society of Aeronautics and Astronautics, pp 62–68

  70. Song ZY, Gong QH, Wang C, He Y, Shi GX (2021) Review and progress of the autonomous guidance method for long march launch vehicle ascent flight. Sci China Inf Sci 51(10):1587–1608

    Google Scholar 

  71. Lv GX, Song ZY (2017) Guidance methods of long-march launch vehicles. J Astronaut 38(09):895–902

    Google Scholar 

  72. Chandler DC, Smith IE (1967) Development of the iterative guidance mode with its application to various vehicles and missions. J Spacecr Rocket 4(7):898–903

    Article  Google Scholar 

  73. Ru JX (2009) An iterative guidance method for liquid launch vehicle. Sci China 39(04):696–706

    Google Scholar 

  74. Chen XM, Yu ML (2003) Study of iterative guidance application to launch vehicles. J Aeronaut 05:484–489

    CAS  Google Scholar 

  75. Han XY, Ma Y, Zhang ZG et al (2018) Study on application of iterative guidance algorithm with injection attitude constraints. J Aeronaut 39(05):508–515

    Google Scholar 

  76. Wang Z, Li JF, Zhang J et al (2018) An adaptive guidance method of directly injecting rocket based on optimal analytical solution. Aerosp Control 36(02):37–41

    CAS  Google Scholar 

  77. Hao CC, Si C, Zhou MJ (2018) An adaptive iterative guidance method with terminal attitude constraint. Aerosp Control 36(06):14–19

    Google Scholar 

  78. Acikmese B, Carson JMI, Blackmore L (2013) Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem. IEEE Trans Control Syst Technol 21(6):2104–2113

    Article  Google Scholar 

  79. Acikmese B, Ploen SR (2007) Convex programming approach to powered descent guidance for Mars landing. J Guid Control Dyn 30(5):1353–1366

    Article  ADS  Google Scholar 

  80. Blackmore L, Acikmese B, Scharf DP (2010) Minimum-landing-error powered-descent guidance for Mars landing using convex optimization. J Guid Control Dyn 33(4):1161–1171

    Article  ADS  Google Scholar 

  81. Lu P, Liu X (2013) Autonomous trajectory planning for rendezvous and proximity operations by conic optimization. J Guid Control Dyn 36(2):375–389

    Article  ADS  Google Scholar 

  82. Liu X, Lu P (2013) Robust trajectory optimization for highly constrained rendezvous and proximity operations. In: AIAA Guidance, Navigation, and Control (GNC) Conference

  83. Gao JS (2019) Research on re-entry trajectory optimization and guidance method for lifting vehicle. Huazhong University of Science and Technology

  84. Han XY, Ma Y, Cheng X et al (2019) Trajectory reconfiguration strategy research on launch vehicle with thrust failure. Missiles Space Veh 02:7–11

    Google Scholar 

  85. Han YP (2016) Ascent adaptive guidance for power system fault of launch vehicle. Harbin Institute of Technology

  86. Chang WQ, Zhang ZG (2019) Analysis of fault modes and applications of self-adaptive guidance technology for launch vehicle. J Astronaut 40(03):302–309

    Google Scholar 

  87. Song ZY, Wang C, Gong QH (2019) Autonomous trajectory planning for launch vehicle under thrust drop failure. Sci Sin Inform 49:1472–1487 (in Chinese)

    Article  Google Scholar 

  88. Moe MM (1960) An approximation to the re-entry trajectory. ARS J 30(1):50–53

    Article  Google Scholar 

  89. Bate RR, Johnson RW (1962) Empirical formulas for ballistic re-entry trajectories. ARS J 32(12):1882–1887

    Article  Google Scholar 

  90. Blum R (1962) Re-entry trajectories - flat earth approximation. ARS J 32(4):616–620

    Article  Google Scholar 

  91. Wu XZ (2015) Research on entry guidance and control algorithm for glide vehicle. Beijing Institute of Technology,

  92. Yu L (2018) Research on guidance technology of re-entry for reusable launch vehicle. The Nanjing University of Aeronautics and Astronautics

  93. Han P, Shan J, Meng X (2013) Re-entry trajectory optimization using an hp-adaptive Radau pseudospectral method. Proc Inst Mech Eng Part G-J Aerosp Eng 227(10):1623–1636

    Article  Google Scholar 

  94. Tian B, Zong Q (2011) Optimal guidance for re-entry vehicles based on indirect Legendre pseudospectral method. Acta Astronaut 68(7–8):1176–1184

    Article  ADS  Google Scholar 

  95. Yang XL, Mease KD (2004) Entry guidance and trajectory tracking error analysis. J Aeronaut 25(03):283–288

    Google Scholar 

  96. Hu JX, Chen KJ, Zhao HY et al (2007) Reentry trajectory design and guidance for reusable launch vehicle. Aerosp Control 06:13–16

    Google Scholar 

  97. Zheng X, Yang SC, Zhang KQ (2018) Design and simulation of trajectory tracking guidance law based on LQR for target missile. In: IOP Conference Series-Materials Science and Engineering

  98. Zhilei G, Yanni W, Meibo LV (2018) Three-dimensional trajectory tracking guidance law based on linear quadratic regulator. J Phys: Conf Ser 1039:12042–12046

    Google Scholar 

  99. Dai J, Xia Y (2015) Mars atmospheric entry guidance for reference trajectory tracking. Aerosp Sci Technol 45:335–345

    Article  Google Scholar 

  100. Brunner CW, Lu P (2012) Comparison of fully numerical predictor-corrector and Apollo skip entry guidance algorithms. J Astronaut Sci 59(3):517–540

    Article  Google Scholar 

  101. Zhao J, Zhou R, Zhang C (2015) Predictor-corrector re-entry guidance satisfying no-fly zone constraints. J Beijing Univ Aeronaut Astronaut 41(05):864–870

    Google Scholar 

  102. Wang T, Zhang H, Tang G (2017) Predictor-corrector entry guidance with waypoint and no-fly zone constraints. Acta Astronaut 138(SI):10–18

    Article  ADS  Google Scholar 

  103. Wang X, Tang SJ, Qi S et al (2018) Predictor-corrector entry guidance with terminal altitude constraint. Tactical Missile Technol 04:70–77

    Google Scholar 

  104. Ran MP, Wang Q, Mo HD et al (2014) ANFIS-based predictive re-entry guidance for aerospace vehicles. Acta Armamentarii 35(12):2016–2022

    Google Scholar 

  105. Li Z, Sun X, Hu C et al (2018) Neural network based online predictive guidance for high lifting vehicles. Aerosp Sci Technol 82–83:149–160

    Google Scholar 

  106. Chen D, Chao T, Wang S et al (2012) Rapid three-dimensional constrained trajectory generation for near space aerospace vehicles. In: 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA

  107. Lu P (2000) Closed-form control laws for linear time varying systems. IEEE Trans Autom Control 45(3):537–542

    Article  MathSciNet  Google Scholar 

  108. Dukemang (2002) Profile following entry guidance using linear quadratic regulator theory. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA

  109. Tian B, Fan W, Su R et al (2014) Real-time trajectory and attitude coordination control for reusable launch vehicle in re-entry phase. IEEE Trans Ind Electron 62(3):1639–1650

    Article  Google Scholar 

  110. Liu X, Lu P, Pan B (2017) Survey of convex optimization for aerospace applications. Astrodynamics 1(1):23–40

    Article  ADS  Google Scholar 

  111. Wang Z, Grant MJ (2018) Autonomous entry guidance for aerospace vehicles by convex optimization. J Spacecr Rocket 55(4):993–1006

    Article  Google Scholar 

  112. Lu Q, Zhou J (2018) Reentry guidance for aerospace vehicle satisfying no-fly zone constraints. Trans Inst Meas Control 40(13):3899–3908

    Article  Google Scholar 

  113. Zeng XF, Wang JY, Wang XH (2013) Gliding guidance based on energy and analytical predictor-corrector. Syst Eng Electron 35(12):2582–2588

    Google Scholar 

  114. Cui NG, Huang R, Fu Y et al (2015) Design of analytical prediction-correction skip entry guidance law based on matched asymptotic expansions. Chin J Aeronaut 36(08):2764–2772

    Google Scholar 

  115. Shen ZJ, Lu P (2004) Dynamic lateral entry guidance logic. J Guid Control Dyn 27(6):949–959

    Article  ADS  Google Scholar 

  116. Xue S, Lu P (2010) Constrained predictor–corrector entry guidance. J Guid Control Dyn 33(4):1273–1281

    Article  ADS  Google Scholar 

  117. Lu P (2008) Predictor–corrector entry guidance for low-lifting vehicles. J Guid Control Dyn 31(4):1067–1075

    Article  ADS  Google Scholar 

  118. Zeng L, Zhang H, Zheng W (2018) A three-dimensional predictor–corrector entry guidance based on reduced-order motion equations. Aerosp Sci Technol 73:223–231

    Article  Google Scholar 

  119. Chai R, Tsourdos A, Savvaris A et al (2020) Real-time re-entry trajectory planning of aerospace vehicles: a two-step strategy incorporating fuzzy multiobjective transcription and deep neural network. IEEE Trans Industr Electron 67(8):6904–6915

    Article  Google Scholar 

  120. Zhang HH (2018) Research on terminal area energy management of orbit algorithm with iterative correction. J Astronaut 39(09):995–1002

    Google Scholar 

  121. Kenneth R, Horneman, Craig A et al (2004) Terminal area energy management trajectory planning for an unpowered reusable launch vehicle. In: AIAA 2004–5183

  122. Burchett BT (2004) Fuzzy logic trajectory design and guidance for terminal area energy management. J Spacecr Rocket 41(3):444–450

    Article  Google Scholar 

  123. Chi Z (2014) Trajectory and guidance law design of terminal area energy management for reusable launch vehicle. National University of Defense Technology

  124. She W, Liu K, Qiao H (2020) Development analysis of guidance technology for aerospace vehicle based on combination engine. Tactical Missile Technol 05:52–65

    Google Scholar 

  125. Ding L (2015) Longitudinal control of unpowered approach and landings for reusable launch vehicles with different configurations. The Nanjing University of Aeronautics and Astronautics

  126. Huang D (2016) Path planning, guidance, and control for an aerospace vehicle. Northwestern Polytechnical University

  127. Schierman JD, Hull JR, Ward DG. On-line trajectory command reshaping for reusable launch vehicles. In: AIAA 2003–5439

  128. Peng T, Meng L, Ye Y, Huang Y, Li T, Xue Y (2014) Guidance technology for autolanding of unpowered reusable launch vehicle. J Terahertz Sci Electron Inf Technol 12(02):208–212

    Google Scholar 

  129. Yang J, Wang H, Tang S, Yan X (2014) Design of longitudinal guidance law for reusable launch vehicle autolanding. Comput Simul 31(10):90–94

    Google Scholar 

  130. Schierman JD, Hull JR, Ward DG. Adaptive Guidance with Trajectory Reshaping for Reusable Launch Vehicles. In: AIAA 2002–4458

  131. Cheng L, Wang Z, Song Y et al (2020) Real-time optimal control for irregular asteroid landings using deep neural networks. Acta Astronaut 170:66–79

    Article  ADS  Google Scholar 

  132. Zhao S, Shmaliy YS, Liu F (2022) Batch optimal FIR smoothing: increasing state informativity in non-white measurement noise environments. IEEE Trans Ind Inform. https://doi.org/10.1109/tii.2022.3193879

    Article  Google Scholar 

  133. Zhang T, Zhao S, Luan X, Liu F (2022) Bayesian inference for state-space models with student-t mixture distributions. IEEE Trans Cybern 53(7):4435–4445

    Article  Google Scholar 

  134. Zhao S, Li K, Ahn CK, Huang B, Liu F (2022) Tuning-free Bayesian estimation algorithms for faulty sensor signals in state-space. IEEE Trans Industr Electron 70(1):921–929

    Article  Google Scholar 

  135. Zhao S, Wang J, Shmaliy YS et al (2021) Discrete time q-lag maximum likelihood FIR smoothing and iterative recursive algorithm. IEEE Trans Signal Process 69:6342–6354

    Article  MathSciNet  ADS  Google Scholar 

  136. Zhao S, Huang B (2020) Trial-and-error or avoiding a guess? Initialization of the Kalman filter. Automatica 121:109184

    Article  MathSciNet  Google Scholar 

  137. Zhao S, Shmaliy YS, Andrade-Lucio JA et al (2020) Multipass optimal FIR filtering for processes with unknown initial states and temporary mismatches. IEEE Trans Industr Inf 17(8):5360–5368

    Article  Google Scholar 

  138. Zhao S, Shmaliy YS, Ahn CK et al (2020) Self-tuning unbiased finite impulse response filtering algorithm for processes with unknown measurement noise covariance. IEEE Trans Control Syst Technol 29(3):1372–1379

    Article  Google Scholar 

  139. Zhao S, Huang B, Zhao C (2020) Online probabilistic estimation of sensor faulty signal in industrial processes and its applications. IEEE Trans Industr Electron 68(9):8853–8862

    Article  Google Scholar 

Download references

Funding

Fundamental Research Funds for the Central Universities, JUSRP123063, Chengxi Zhang, 111 Project, B23008, Chengxi Zhang, National Natural Science Foundation of China, 62003112, Chengxi Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxi Zhang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Cai, P., Gong, Z. et al. Review on guidance and control of aerospace vehicles: recent progress and prospect. AS (2024). https://doi.org/10.1007/s42401-024-00273-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42401-024-00273-6

Keywords

Navigation