Skip to main content

Advertisement

Log in

Recent trends in approaches for optimization of process parameters for the production of microbial cellulase from wastes

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Cellulose is considered to be one of the most underutilized biomass available on earth. These cellulosic resources, if utilized as the precursor of food, feed and biofuel can meet up the ever-increasing demands for food and energy. Since cellulase is an enzyme complex, fermentation of cellulose from agro-wastes and industrial effluents is a complex event. The physicochemical parameters are generally optimized in "one at a time" mode in fed-batch culture. But with the advent of time, statistical and mathematical modelling is used, like response surface methodology (RSM), artificial neural network (ANN), machine learning algorithm, and genetic algorithm to improve enzyme production. In bioreactor-based cellulase production, a LabVIEW-based intelligent system for monitoring bio-processing is used for the optimization of the target parameters. RSM and ANN are high-quality prediction mathematical models but ANN shows its superiority in context to the fitting of data as well as its estimation capabilities. The difference of ANN concerning RSM is its requirement of a large number of trained data. This review provides a comprehensive study of literature in context to various advanced mechanisms for optimization of cellulase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aanchal, Akhtar N, Kainka, Goyal D, Goyal A (2016) Response surface methodology for optimization of microbial cellulase production. Rom Biotechnol Lett 21(5):11832–11841

    CAS  Google Scholar 

  • Akhtar N, Anchal A, Goyal D, Goyal A (2015) Simplification and optimization of media ingredients for enhanced production of CMCase by newly isolated Bacillus subtilis NA15. Environ Prog Sustain Energy 34(2):533–541

    Article  CAS  Google Scholar 

  • Alford JS (2006) Bioprocess control: advances and challenges. Comput Chem Eng 30:1464–1475

    Article  CAS  Google Scholar 

  • Ali SBR, Muthuvelayudham R, Viruthagiri T (2013) Enhanced production of cellulase from tapioca stem using response surface methodology. Innova Roman Food Biotechnol 12:41–51

    Google Scholar 

  • Badhan A, Chadha B, Kaur J, Saini H, Bhat M (2007) Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour Technol 98(3):504–510

    Article  CAS  Google Scholar 

  • Baraa R, Anwar R (2017) Avogadro program for chemistry education: to what extent can molecular visualization and three-dimensional simulations enhance meaningful chemistry learning? World J Chem Educ 5:136–141

    Article  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveira EP, VillarEscaleira LSLA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977

    Article  CAS  Google Scholar 

  • Bhachoo J, Beuming T (2017) Investigating protein–peptide interactions using the Schrödinger computational suite. In: Schueler-Furman O, London N (eds) Modeling peptide–protein interactions. Methods in molecular biology, vol 1561. Humana Press, New York

    Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  Google Scholar 

  • Bhotmange M, Shastri P (2011) Application of artificial neural networks to food and fermentation technology. In: Suzuki K (ed) Artificial neural networks—industrial and control engineering applications. InTech, Rijeka, pp 201–222 (ISBN 978-953-307-220-3)

  • Box G, Hunter JS (1957) Multifactor experimental designs for exploring response surfaces. Ann Math Stat 28:195–241

    Article  Google Scholar 

  • Caramihai M, Severin I (2018) Enzyme production modeling simulation using neural techniques. Int J Biol Biomed 3:26–29

    Google Scholar 

  • Casciatori FP, Casciatori PA, Thoméo JC (2013) Cellulase production in packed bed bioreactor by solid-state fermentation. In: 21st European biomass conference and exhibition, 3–7 June 2013, Copenhagen, Denmark

  • Chang C, Guizhuan X, Junfang Y, Wang D (2011) Optimization of cellulase production using agricultural wastes by artificial neural network and genetic algorithm. Chem Prod Process Model 6(1)

  • Cheng SW, Wang YF, Hong B (2012) Statistical optimization of medium compositions for chitosanase production by a newly isolated streptomyces albus. Braz J Chem Eng 29(04):691–698

    Article  CAS  Google Scholar 

  • da Silva Nunes N, Carneiro LL, de Menezes LHS, de Carvalho MS, Pimentel AB, Silva TP, Pacheco CSV, Tavares IMC, Santos PH, das Chagas TP, da Silva EGP, de Oliveira JR, Bilal M, Franco M (2020) Simplex-centroid design and artificial neural network-genetic algorithm for the optimization of exoglucanase production by Penicillium roqueforti ATCC 10110 through solid-state fermentation using a blend of agroindustrial wastes. BioEnergy Res 13:1130–1143. https://doi.org/10.1007/s12155-020-10157-0

  • Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem Eng J 41:266–273

    Article  CAS  Google Scholar 

  • Doehlert DH, Klee VL (1972) Experimental designs through level reduction of the d-dimensional cuboctahedron. Discrete Math 2:309–334

    Article  Google Scholar 

  • Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737

    Article  CAS  Google Scholar 

  • Farinas CS, Vitcosque GL, Fonseca RF, Neto VB, Couri S (2011) Modeling the effects of solid state fermentation operating conditions on endoglucanase production using an instrumented bioreactor. Ind Crops Prod 34(2011):1186–1192

    Article  CAS  Google Scholar 

  • Filos G, Tziala T, Lagios G, Vynios DH (2006) Preparation of cross-linked cellulases and their application for the enzymatic production of glucose from municipal paper wastes. Prep Biochem Biotechnol 36:111–125

    Article  CAS  Google Scholar 

  • Fischer J, Lopes VS, Cardoso SL, Coutinho FU, Cardoso VL (2017) Machine learning techniques applied to lignocellulosic ethanol in simultaneous hydrolysis and fermentation. Braz J Chem Eng 34(1):53–63

    Article  CAS  Google Scholar 

  • Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11(5):905–919

    Article  CAS  Google Scholar 

  • Foroozandeh Shahraki M, Ariaeenejad S, Fallah Atanaki F, Zolfaghari B, Koshiba T, Kavousi K, Salekdeh GH (2020) MCIC: automated identification of cellulases from metagenomic data and characterization based on temperature and pH dependence. Front. Microbiol. 11: https://doi.org/10.3389/fmicb.2020.567863

    Article  Google Scholar 

  • Foyle T, Jennings L, Mulcahy P (2007) Compositional analysis of lignocellulosic materials: evaluation of methods used for sugar analysis of waste paper and straw. Biores Technol 98(16):3026–3036

    Article  CAS  Google Scholar 

  • Franco-Lara E, Link H, Weuster-Botz D (2006) Evaluation of artificial neural networks for modelling and optimization of medium composition with a genetic algorithm. Process Biochem 41:2200–2206. https://doi.org/10.1016/j.procbio.2006.06.024)

    Article  CAS  Google Scholar 

  • Gama R, Van Dyk JS, Burton MH (2017a) Using an artificial neural network to predict the optimal conditions for enzymatic hydrolysis of apple pomace. 3 Biotech 7:138

    Article  Google Scholar 

  • Gama R, Van Dyk JS, Burton MH, Pletschke BI (2017b) Using an artificial neural network to predict the optimal conditions for enzymatic hydrolysis of apple pomace. 3. Biotech 7(2):138. https://doi.org/10.1007/s13205-017-0754-1

    Article  Google Scholar 

  • Gaur R, Lata Khare SK (2005) Immobilization of xylan-degrading enzymes from Scytalidium thermophilum on Eudragit L-100. World J Microbiol Biotechnol 21:1123–1128

    Article  CAS  Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S (2011) Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int 2011:1–8. https://doi.org/10.4061/2011/810425

    Article  CAS  Google Scholar 

  • Geiger EO, Vogel HC, Todaro CL (1996) Fermentation and biochemical engineering handbook; ed., vol 2. Noyes Publications, pp 161–180

  • Gonzalez R, Islas L, Obregon A-M, Escalante L, Sanchez S (1995) Gentamicin formation in Micromonospora purpurea: stimulatory effect of ammonium. J Antibiot 48:479–483

    Article  CAS  Google Scholar 

  • Goukanapalle PKR, Kanderi DK, Rajoji G (2020) Optimization of cellulase production by a novel endophytic fungus Pestalotiopsis microspora TKBRR isolated from Thalakona forest. Cellulose 27:6299–6316. https://doi.org/10.1007/s10570-020-03220-8

    Article  CAS  Google Scholar 

  • Gozan M, Harahap AF, Bakti CP, Setyahadi S (2018) Optimization of cellulase production by Bacillus sp. BPPT CC RK2 with pH and temperature variation using response surface methodology. E3S Web Conf 67:02051

  • Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:W270–W277

    Article  CAS  Google Scholar 

  • Hareesh ES, Faisal PA, Benjamin S (2016) Optimization of parameters for the production of cellulase from Achromobacter xylosoxidans BSS4 by solid-state fermentation. Electron J Biol 12:4

    Google Scholar 

  • Henrissat B, Teeri TT, Warren RAJ (1998) A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett 425(2):352–354

    Article  CAS  Google Scholar 

  • Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10(4):358–364

    Article  CAS  Google Scholar 

  • Hoa BT, Hung PV (2013) Optimization of nutritional composition and fermentation conditions for cellulase and pectinase production by Aspergillus oryzae using response surface methodology. Int Food Res J 20(6):3269–3274

    Google Scholar 

  • Hussain Z, Sajjad W, Khan T (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26:2895–2911

    Article  CAS  Google Scholar 

  • Imran M, Anwar Z, Irshad M, Javid A, Hussain A, Ali S (2017) Optimization of cellulase production from a novel strain of Aspergillus Tubingensis IMMIS2 through response surface methodology. Biocatal Agric Biotechnol 12:191–198. https://doi.org/10.1016/j.bcab.2017.10.005

    Article  Google Scholar 

  • Jabasingh SA (2011) Response surface methodology for the evaluation and comparison of cellulase production by Aspergillus nidulans SU04 and Aspergillus nidulans MTCC344 cultivated on pretreated sugarcane bagasse. Chem Biochem Eng 25(4):501–511

    CAS  Google Scholar 

  • Jabasingh S, Valli N (2012) Optimization of cellulase synthesis by RSM and evaluation of ethanol production from enzymatically hydrolyzed sugarcane bagasse using Saccharomyces cerevisiae. J Sci Ind Res 71(5)

  • Jeya M, Zhang YW, Kim IW, Lee JK (2009) Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Biores Technol 100(21):5155–5161

    Article  CAS  Google Scholar 

  • Johnson EA, Sakajoh M, Halliwell G, Madia A, Demain AL (1982) Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl Environ Microbiol 43:1125–1132

    Article  CAS  Google Scholar 

  • Kar B, Verma P, Patel GK, Sharma AK (2017) Molecular cloning, characterization and in silico analysis of a thermostable β-glucosidase enzyme from Putranjiva roxburghii with a significant activity for cellobiose. Phytochemistry 140:151–165

    Article  CAS  Google Scholar 

  • Karmakar M, Ray RR (2010) Extra cellular endoglucanase production by Rhizopus oryzae in solid and liquid state fermentation of agro wastes. Asian J Biotechnol 2(1):27–36

    Article  CAS  Google Scholar 

  • Karmakar M, Ray RR (2011a) Optimization of endoglucanase production in liquid state fermentation from waterhyacinth by Rhizopus oryzae using response surface methodology. Aust J Basic Appl Sci 5(3):713–720

    CAS  Google Scholar 

  • Karmakar M, Ray RR (2011b) A statistical approach for optimization of simultaneous production of β-glucosidase and endoglucanase by Rhizopus oryzae from solid-state fermentation of water hyacinth using central composite design. Biotechnol Res Int 2011:574983–574990

    Article  Google Scholar 

  • Karmakar M, Ray RR (2011c) Optimization of production conditions of extra cellular β-glucosidase in submerged fermentation of waterhyacinth by Rhizopus oryzae using response surface methodology. Res J Pharm Biol Chem Sci 2:299–308

    CAS  Google Scholar 

  • Kim D, Park BH, Jung BW, Kim MK, HongLee SI (2006) Identification and molecular modeling of a family 5 endocellulase from Thermus caldophilus GK24, a cellulolytic strain of Thermus thermophiles. Int J Mol Sci 7:571–589

    Article  CAS  Google Scholar 

  • Kubicek C (1993) From cellulose to cellulase inducers: facts and fiction. In: Proceedings of the second Tricel symposium on Trichoderma reesei cellulases and other hydrolases, Espoo, Finland. Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, pp 181–188

  • Kumar NR, Sambavi TR, Baskar G, Renganathan S (2020) International experimental validation of optimization by statistical and CFD simulation methods for cellulase production from waste lignocellulosic mixture. J Mod Sci Technol 5(2):45–58

    Google Scholar 

  • Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27(1):129–134

    Article  CAS  Google Scholar 

  • Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73(10):3165–3172

    Article  CAS  Google Scholar 

  • Li G, Dong Y, Reetz MT (2019) Can machine learning revolutionize directed evolution of selective enzymes? Adv Synth Catal 361:2377–2386

    CAS  Google Scholar 

  • Liao L, McClatchy DB, Yates JR (2009) Shotgun proteomics in neuroscience. Neuron. 63(1):12–26. https://doi.org/10.1016/j.neuron.2009.06.011

    Article  CAS  Google Scholar 

  • Lincoln T (2013) Agriculture, plant physiology, and human population growth: past, present, and future. Theor Exp Plant Physiol 25(3):167–181

    Google Scholar 

  • Lindahl E, Azuara C, Koehl P, Delarue M (2006) NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. NAR 34:W52–W56

    Article  CAS  Google Scholar 

  • Lohri CR, Diener S, Zabaleta I (2017) Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle-income settings. Rev Environ Sci Biotechnol 16:81–130

    Article  Google Scholar 

  • Lua RC, Lichtarge O (2010) PyETV: a PyMOL evolutionary trace viewer to analyze functional site predictions in protein complexes. Bioinformatics (oxford, England) 26(23):2981–2982

    CAS  Google Scholar 

  • Mandal M, Ghosh U (2018) Application of statistical tool for optimization of physical parameters for cellulase production under solid state fermentation. Indian J Biotechnol 17(3):441–447

    CAS  Google Scholar 

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health 8:14

    Article  Google Scholar 

  • Mazlan NSF, Khairudin NBA (2010) Docking Study of β-glucosidase B (BglB) from P. polymyxca with cellobiose and cellotetrose. J Med Bioeng 3:78–83

    Google Scholar 

  • Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4(3):324–329

    Article  CAS  Google Scholar 

  • Mukherjee S, Karmakar M, Ray RR (2011) Production of extra cellular exo glucanase by Rhizopus oryzae from submerged fermentation of agro wastes. Recent Res Sci Technol 3(3):69–75

    CAS  Google Scholar 

  • Oehlert GW (2000) Design and analysis of experiments: response surface design. W. H. Freeman Company, New York, pp 509–542

    Google Scholar 

  • Ozer A, Gurbuz G, Calmila A, Korbaht BK (2009) Biosorption of copper (II) ions on Enteromorpha prolifera: application of response surface methodology (RSM). Chem Eng J 146(3):377–387

    Article  CAS  Google Scholar 

  • Panda BP, Ali M, Javed S (2007) Fermentation process optimization. Res J Microbiol 2:201–208

    Article  CAS  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Parkhey P, Gupta P, Eswari JS (2017) Optimization of cellulase production from isolated cellulolytic bacterium: comparison between genetic algorithms, simulated annealing, and response surface methodology. Chem Eng Commun 204(1):28–38

    Article  CAS  Google Scholar 

  • Paul M, Panda G, Mohapatra PKD, Thatoi H (2020) Study of structural and molecular interaction for the catalytic activity of cellulases: an insight in cellulose hydrolysis for higher bioethanol yield. J Mol Struct 1204(15):127547

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  • Piovesan D, Minervini G, Tosatto SC (2016) The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res 44(W1):W367–W374

  • Rajoka MI, ZiaKhalil-ur-Rehman Y (2007) A surface immobilization method of endoglucanase from Cellulomonas biazotea mutant improved catalytic properties of biocatalyst during processing. Protein Pept Lett 14:734–741

    Article  CAS  Google Scholar 

  • Rodhe AV, Sateesh L, Sridevi J, Venkateswarlu B, Rao LV (2011) Enzymatic hydrolysis of sorghum straw using native cellulase produced by T. reesei NCIM 992 under solid state fermentation using rice straw. 3 Biotech 1:207–215

    Article  Google Scholar 

  • Roger S, Bissell A (1992) RasMol: a program for fast realistic rendering of molecular structures with shadows. In: Proceedings of the 10th eurographics UK '92 conference, University of Edinburgh, Scotland

  • Roy I, Gupta A, Khare SK, Bisaria VS, Gupta MN (2003) Immobilization of xylan-degrading enzymes from Melanocarpus albomyces IIS 68 on the smart polymer Eudragit L-100. Appl Microbiol Biotechnol 61:309–313

    Article  CAS  Google Scholar 

  • Sambasivarao SV, Granum DM, Wang H, Mark Maupin C (2014) Identifying the enzymatic mode of action for cellulase enzymes by means of docking calculations and a machine learning algorithm. AIMS Mol Sci 1(1):59–80. https://doi.org/10.3934/molsci.2014.1.59

    Article  Google Scholar 

  • Sandhu SK, Oberoi HS, Babbar N, Miglani K, Chadha BS, Nanda DK (2013) Two-stage statistical medium optimization for augmented cellulase production via solid-state fermentation by newly isolated Aspergillus niger HN-1 and application of crude cellulase consortium in hydrolysis of rice straw. J Agric Food Chem 61:12653–12661

    Article  CAS  Google Scholar 

  • Saranraj P, Stella D, Reetha D (2012) Microbial cellulases and its applications: a review. Int J Biochem Biotechnol Sci 1:1–12

    Google Scholar 

  • Saravanan P, Muthuvelayudham R, Rajesh K, Kannan R, Viruthagiri T (2012a) Optimization of cellulase production using Trichoderma reesei by RSM and comparison with genetic algorithm. Front Chem Sci Eng 6(4):443–452

    Article  CAS  Google Scholar 

  • Saravanan P, Muthuvelayudham R, Rajesh Kannan R (2012b) Optimization of cellulase production using Trichoderma reesei by RSM and comparison with genetic algorithm. Front Chem Sci Eng 6:443–452

    Article  CAS  Google Scholar 

  • Saravanan P, Muthuvelayudham RT, Viruthagiri T (2013) Enhanced production of cellulase from pineapple waste by response surface methodology. J Eng 2013:1–8

    Article  Google Scholar 

  • Selvendran RR (1985) Developments in the chemistry and biochemistry of pectin and hemicellulosic polymers. J Cell Sci 2:51–88

    Article  CAS  Google Scholar 

  • Selvam K, Senbagam D, Selvankumar T, Sudhakar C, Kamala-Kannan S, Senthilkumar B, Govarthanan M (2017) Cellulase enzyme: homology modeling, binding site identification and molecular docking. J Mol Struct 1150:61–67

    Article  CAS  Google Scholar 

  • Shankar T, Isaiarasu L (2012) Statistical optimization for cellulase production by Bacillus pumilus EWBCM1 using response surface methodology. Glob J Biotechnol Biochem 7(1):1–6

    CAS  Google Scholar 

  • Siedhoff NE, Schwaneberg U, Davari MD (2020) Machine learning-assisted enzyme engineering. Methods Enzymol. https://doi.org/10.1016/bs.mie.2020.05.005

    Article  Google Scholar 

  • Singh J, Sharma A (2012) Application of response surface methodology to the modelling of cellulase purification by solvent extraction. Adv Biosci Biotechnol 3(4):408–416

    Article  Google Scholar 

  • Singh A, Tatewar D, Shastri PN, Pandharipande SL (2008) Application of ANN for prediction of cellulase and xylanase production by Trichoderma ressei under SSF condition. Indian J Chem Technol 15:53–58

    CAS  Google Scholar 

  • Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi CK (2017) Strategies for fermentation medium optimization: an in-depth review. Front Microbiol 7:2087

    Article  Google Scholar 

  • Sirohi R, Singh A, Tarafdar A, Shahi NC (2018) Application of genetic algorithm in modelling and optimization of cellulase production. Bioresour Technol 270:751–754

    Article  CAS  Google Scholar 

  • Somayajula A, Asaithambi P, Susree M, Matheswaran M (2012) Sonoelectrochemical oxidation for decolorization of reactive red 195. Ultrasonics Sonochem 19(4):803–811

    Article  CAS  Google Scholar 

  • Taniguchi M, Kobayashi M, Fujii M (1989) Properties of a reversible soluble insoluble cellulase and its application to repeated hydrolysis of crystalline cellulose. Biotechnol Bioeng 34(8):1092–1097

    Article  CAS  Google Scholar 

  • Velazco EE, Bendell A, Disney J, Pridmore WA (1991) Taguchi methods: applications in world industry. Interfaces (Providence) 21:99–101

    Google Scholar 

  • Wang J-C, Hu S-H, Liang Z-C, Yeh C-J (2005) Optimization for the production of water-soluble polysaccharide from Pleurotus citrinopileatus in submerged culture and its antitumor effect. Appl Microbiol Biotechnol 67:759–766

    Article  CAS  Google Scholar 

  • Wickramasinghe GHIM, Rathnayake PPAMSI, Chandrasekharan NV (2017) Trichoderma virens β-glucosidase I (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies. BMC Microbiol 17:137

    Article  Google Scholar 

  • Wu LL, Yuan XY, Sheng J (2005) Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Membr Sci 250(1):167–173

    Article  CAS  Google Scholar 

  • Zambare V, Christopher L (2011) Statistical analysis of cellulase production in Bacillus amyloliquefaciens. ELBA Bioflux 3:38–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Rani Ray.

Ethics declarations

Conflict of Interest

The authors do not have any conflict of statement.

Ethical statement

The work was conducted under guidelines of Institutional Ethics Committee MAKAUT: IEC-(18-19)/02.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, D., Nag, M., Mukherjee, D. et al. Recent trends in approaches for optimization of process parameters for the production of microbial cellulase from wastes. Environmental Sustainability 4, 273–284 (2021). https://doi.org/10.1007/s42398-021-00189-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-021-00189-3

Keywords

Navigation