Skip to main content

Advertisement

Log in

Utilization of Eichhornia crassipes biomass for production of biochar and its feasibility in agroecosystems: a review

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Biochar is a carbon-rich product, derived from the pyrolysis of biomass in the absence of oxygen. It is a widely accepted soil amendment for increasing the amount of soil carbon, nutrients, organic matter, enhancing population of soil microbes, soil retention and aeration capacity. Biochar can be produced using agriculture residues, plant biomass, and animal waste. Eichhornia crassipes is a high biomass producing aquatic plant used for a variety of purposes around the world. This review highlights the fabrication of biochar from E. crassipes biomass. The biochar produced from E. crassipes biomass bears good nutritive values and its application to the soil enhances agricultural crop productivity with improved soil health. The conversion of E. crassipes biomass in to biochar not only provides a significantly better alternative to chemical fertilizers but also a sustainable management strategy of this invasive plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Map source: Téllez et al. 2008; UNEP 2013)

Fig. 2

Similar content being viewed by others

References

  • Abd NI, Al-Mayah AM, Muallah SK (2018) Microwave pyrolysis of water Hyacinth for biochar production using Taguchi method. Int J Eng Technol 7:121–126

    CAS  Google Scholar 

  • Abosede IA, Peter OA, Adunola AAT (2017) Biomass valorization: agricultural waste in environmental protection, phytomedicine and biofuel production. Intech Open 2017:22

    Google Scholar 

  • Adekiya AO, Agbede TM, Olayanju A, Ejue WS, Adekanye TA, Adenusi TT, Ayeni JF (2020) Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical sandy loam alfisol. Sci World J. https://doi.org/10.1155/2020/9391630

    Article  Google Scholar 

  • Ahmed A, Bakar MSA, Hamdani R, Park YK, Lam SS, Sukri RS, Aslam M (2020) Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other value-added applications. Environ Res 2020:109596

    Google Scholar 

  • Akhtar SS, Li G, Andersen MN, Liu F (2014) Biochar enhances yield and quality of tomato under reduced irrigation. Agric Water Manag 138:37–44

    Google Scholar 

  • Al-Rahbi AS, Williams PT (2017) Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char. Appl Energy 190:501–509

    CAS  Google Scholar 

  • Amonette JE, Joseph S (2009) Characteristics of biochar: microchemical properties. Biochar Environ Manage Sci Technol 2009:33

    Google Scholar 

  • Amutio M, Lopez G, Artetxe M, Elordi G, Olazar M, Bilbao J (2012) Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resour Conser Recycl 59:23–31

    Google Scholar 

  • Asadullah M, Zhang S, Li CZ (2010) Evaluation of structural features of chars from pyrolysis of biomass of different particle sizes. Fuel Process Technol 91:877–881

    CAS  Google Scholar 

  • Azargohar R, Jacobson KL, Powell EE, Dalai AK (2013) Evaluation of properties of fast pyrolysis products obtained, from Canadian waste biomass. J Anal Appl Pyrolysis 104:330–340

    CAS  Google Scholar 

  • Azeem M, Hayat R, Hussain Q, Ahmed M, Pan G, Tahir MI, Imran M, Irfan M (2019) Biochar improves soil quality and n2-fixation and reduces net ecosystem co2 exchange in a dryland legume-cereal cropping system. Soil Tillage Res 186:172–182

    Google Scholar 

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33:1093–1109

    CAS  Google Scholar 

  • Ban S, Toda T, Koyama M, Ishikawa K, Kohzu A, Imai A (2019) Modern lake ecosystem management by sustainable harvesting and effective utilization of aquatic macrophytes. Limnology 20(1):93–100

    Google Scholar 

  • Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81(4):687–711

    CAS  Google Scholar 

  • Bora J, Bordoloi M, Kumar S, Gogoi H, Zhu HH, Sarmah AK, Sreeja P, Sreedeep S, Mei G (2021) Influence of biochar from animal and plant origin on the compressive strength characteristics of degraded landfill surface soils. Int J Damage Mech 30(4):484–501

    Google Scholar 

  • Bordoloi S, Garg A, Sreedeep S, Lin P, Mei G (2018) Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Bioresour Technol 263:665–677

    CAS  Google Scholar 

  • Bordoloi S, Gopal P, Boddu R, Wang Q, Cheng YF, Garg A, Sreedeep S (2019) Soil-biochar-water interactions: role of biochar from Eichhornia crassipes in influencing crack propagation and suction in unsaturated soils. J Clean Prod 210:847–859

    CAS  Google Scholar 

  • Bottezini L, Dick DP, Wisniewski A Jr, Knicker H, Carregosa ISC (2021) Phosphorus species and chemical composition of water hyacinth biochars produced at different pyrolysis temperature. Bioresour Technol Rep 14:100684. https://doi.org/10.1016/j.biteb.2021.100684

    Article  Google Scholar 

  • Brendonck L, Maes J, Rommens W et al (2003) The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). II. Species diversity. Archiv Fur Hydrobiol 158:389–405

    Google Scholar 

  • Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30(12):1479–1493

    CAS  Google Scholar 

  • Brundu G (2015) Plant invaders in European and Mediterranean inland waters: profiles, distribution, and threats. Hydrobiologia 746:61–79

    Google Scholar 

  • Butnan S, Deenik JL, Toomsan B, Antal MJ, Vityakon P (2015) Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237:105–116

    Google Scholar 

  • Cai R, Wang X, Ji X, Peng B, Tan C, Huang X (2017) Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth. J Environ Manag 187:212–219

    CAS  Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    CAS  Google Scholar 

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228

    CAS  Google Scholar 

  • Center TD, Dray FA, Jubinsky GP, Grodowltz M, de Anda J, Shear H, Maniak U, Riedel G (1999) Biological control of water hyacinth under conditions of maintenance management: can herbicides and insects be integrated? Environ Manag 23:241–256

    CAS  Google Scholar 

  • Chaiyaraksa C, Boonyakiat W, Bukkontod W, Ngakom W (2019) Adsorption of copper (II) and nickel (II) by chemical modified magnetic biochar derived from Eichhornia crassipes. EnvironmentAsia 12(2):14–23

    Google Scholar 

  • Chaiyaraksa C, Lokham N, Kuikrong R, Artsanapaiboon S (2020) Immobilization of cadmium in soil using magnetic biochar derived from Eichhornia crassipes. ScienceAsia 46(4):450

    CAS  Google Scholar 

  • Chamier J, Schachtschneider K, Le Maitre DC, Ashton PJ, Van Wilgen BW (2012) Impacts of invasive alien plants on water quality, with particular emphasis on South Africa. Water SA 38(2):345–356

    Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of green waste biochar as a soil amendment. Aust J Soil Res 45:629–634

    CAS  Google Scholar 

  • Chen B, Yuan M (2011) Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soils Sed 11:62–71

    Google Scholar 

  • Cheng S, Chen T, Xu W, Huang J, Jiang S, Yan B (2020) Application research of biochar for the remediation of soil heavy metals contamination: a review. Molecules 25(14):3167

    CAS  Google Scholar 

  • Cornette J, Clementson C, Fredericks D (2018) Environmentally sustainable management of water hyacinth (Eichhornia crassipes) in Guyana. Int J Agric Forest 8(1):4–9

    Google Scholar 

  • Dai L, Fan L, Liu Y, Ruan R, Wang Y, Zhou Y, Zhao Y, Yu Z (2017) Production of bio-oil and biochar from soapstock via microwave- assisted co-catalytic fast pyrolysis. Bioresour Technol 225:1–8

    CAS  Google Scholar 

  • Das SK, Ghosh GK, Avasthe R (2021) Conversion of crop, weed and tree biomass into biochar for heavy metal removal and wastewater treatment. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01334-y

    Article  Google Scholar 

  • David JM (2015) Biochar and compost increase crop yields but the effect is short term on sandplain soils of Western Australia. Pedosphere 25:720–728

    Google Scholar 

  • de la Rosa JM, Paneque M, Miller AZ, Knicker H (2014) Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci Total Environ 499:175–184

    Google Scholar 

  • Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou Y, Zheng Y, Cai X (2016) Competitive removal of Cd (II) and Pb (II) by biochars produced from water hyacinths: performance and mechanism. RSC Adv 6(7):5223–5232

    CAS  Google Scholar 

  • El-Naggar A, Lee SS, Awad YM, Yang X, Ryu C, Rizwan M, Rinklebe J, Tsang DC, Ok YS (2018) Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma 332:100–108

    CAS  Google Scholar 

  • Feng W, Xiao K, Zhou W, Zhu D, Zhou Y, Yuan Y, Zhao J (2017) Analysis of utilization technologies for Eichhornia crassipes biomass harvested after restoration of wastewater. Bioresour Technol 223:287–295

    CAS  Google Scholar 

  • Gabhane JW, Bhange VP, Patil PD, Bankar ST, Kumar S (2020) Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Appl Sci 2:1307. https://doi.org/10.1007/s42452-020-3121-5

    Article  CAS  Google Scholar 

  • Gao L, Li B (2004) The study of a specious invasive plant, water hyacinth (Eichhornia crassipes): achievements and challenges. Chin J Plant Ecol 28(6):735–752

    CAS  Google Scholar 

  • Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H, Chen H (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383

    CAS  Google Scholar 

  • Garg A, Huang H, Cai W, Reddy NG, Chen P, Han Y, Zhu HH (2021) Influence of soil density on gas permeability and water retention in soils amended with in-house produced biochar. J Rock Mech Geotech 2021:5

    Google Scholar 

  • Gaurav GK, Mehmood T, Cheng L, Klemeš JJ, Shrivastava DK (2020) Water hyacinth as a biomass: a review. J Clean Prod 277:122214

    CAS  Google Scholar 

  • Gogoi D, Bordoloi N, Goswami R, Narzari R, Saikia R, Sut D, Gogoi L, Kataki R (2017) Efect of torrefaction on yield and quality of pyrolytic products of arecanut husk: an agro-processing wastes. Bioresour Technol 242:36–44

    CAS  Google Scholar 

  • Gopal P, Bordoloi S, Ratnam R, Lin P, Cai W, Buragohain P, Sreedeep S (2019) Investigation of infiltration rate for soil-biochar composites of water hyacinth. Acta Geophys 67(1):231–324

    Google Scholar 

  • Gorovtsov AV, Minkina TM, Mandzhieva SS, Perelomov LV, Soja G, Zamulina IV, Rajput VD, Sushkova SN, Mohan D, Yao J (2019) The mechanisms of biochar interactions with microorganisms in soil. Environ Geochem Health 2019:1–24

    Google Scholar 

  • Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermo-chemical conversion of renewable resources: a review. Renew Sust Energy Rev 12(2):504–517

    CAS  Google Scholar 

  • Guan G, Kaewpanha M, Hao X, Abudula A (2016) Catalytic steam reforming of biomass tar: prospects and challenges. Renew Sustain Energy Rev 58:450–461

    CAS  Google Scholar 

  • Gunnarsson CC, Petersen CM (2007) Water hyacinths as are source in agriculture and energy production: a literature review. Waste Manag 27(1):117–129

    Google Scholar 

  • Gupta DK, Gupta CK, Dubey R, Fagodiya RK, Sharma G, Keerthika A, Shukla AK (2020) Role of biochar in carbon sequestration and greenhouse gas mitigation. In: Biochar applications in agriculture and environment management, pp 141–165

  • Hamer U, Marschner B, Bordowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35:823–830

    CAS  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543

    Google Scholar 

  • Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25:1802–1810

    CAS  Google Scholar 

  • Huang YF, Chiueh PT, Kuan WH, Lo SL (2016) Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics. Energy 100:137–144

    CAS  Google Scholar 

  • Huang H, Reddy NG, Huang X, Chen P, Wang P, Zhang Y, Lin P, Garg A (2021) Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Sci Rep 11(1):1–19

    Google Scholar 

  • Ippolito JA, Ducey TF, Cantrell KB, Novak JM, Lentz RD (2016) Designer, acidic biochar influences calcareous soil characteristics. Chemosphere 142:184–191

    CAS  Google Scholar 

  • Jafari N (2010) Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart. Solms). J Appl Sci Environ Manag 14(2):43–49

    Google Scholar 

  • Jain MS, Paul S, Kalamdhad AS (2019) Utilization of Biochar as an amendment during lignocellulose waste composting: impact on composting physics and realization (probability) amongst physical properties. Process Saf Environ 121:229–238

    CAS  Google Scholar 

  • Jha P, Biswas AK, Lakaria BL, Subba Rao A (2010) Biochar in agriculture-prospects and related implications. Curr Sci 99:1218–1225

    CAS  Google Scholar 

  • Jia H, Ben H, Wu F (2021) Effect of biochar prepared from food waste through different thermal treatment processes on crop growth. Processes 9:276. https://doi.org/10.3390/pr9020276

    Article  Google Scholar 

  • Jiang TY, Jiang J, Xu RK, Li Z (2012) Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89:249–256

    CAS  Google Scholar 

  • Kalus K, Koziel JA, Opaliński S (2019) A review of biochar properties and their utilization in crop agriculture and livestock production. Appl Sci 9(17):3494

    CAS  Google Scholar 

  • Khalifa N, Yousef LF (2015) A short report on changes of quality indicators for a sandy textured soil after treatment with biochar produced from fronds of date palm. Energy Procedia 74:960–965

    Google Scholar 

  • Khan S, Wang N, Reid BJ, Freddo A, Cai C (2013) Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environ Poll 175:64–68

    CAS  Google Scholar 

  • Kuhlbusch TAJ (1998) Black carbon and the carbon cycle. Sci 280:1903–1904

    CAS  Google Scholar 

  • Kuhlbusch TAJ, Andreae MO, Cachier H, Goldammer JG, Lacaux JP, Shea R, Crutzen PJ (1996) Black carbon formation by savanna fires: measurements and implication for the global carbon cycle. J Geophys Res Atm 101:23651–23665

    CAS  Google Scholar 

  • Kumar A, Joseph S, Tsechansky L, Privat K, Schreiter IJ, Schüth C et al (2018) Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Sci Total Environ 626:953–961

    CAS  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen HQ, Bogomolova I, Xu XL (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biol Biochem 41:210–219

    CAS  Google Scholar 

  • Kwon G, Bhatnagar A, Wang H, Kwon EE, Song H (2020) A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. J Hazard Mat 400:123242

    CAS  Google Scholar 

  • Laghari M, Naidu R, Xiao B, Hu ZQ, Mirjat MS, Hu M (2016) Fast pyrolysis biochar from sawdust improves the quality of desert soils and enhances plant growth. J Sci Food Agric 96(1):199–206

    CAS  Google Scholar 

  • Lahori AH, Zhanyu GUO, Zhang Z, Ronghua LI, Mahar A, Awasthi MK, Jiang S (2017) Use of biochar as an amendment for remediation of heavy metal-contaminated soils: prospects and challenges. Pedosphere 27(6):991–1014

    CAS  Google Scholar 

  • Lai WY, Lai C-M, Ke GR, Chung R-S, Chen CT, Cheng C-H, Pai CW, Chen SY, Chen CC (2013) The effects of woodchip biochar application on crop yield, carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet. J Taiwan Inst Chem Eng 44:1039–1044

    CAS  Google Scholar 

  • Lata N, Veenapani D (2011) Response of water hyacinth manure on growth attributes and yield in Brassica juncea. J Cent Eur Agric 12(2):336–343

    Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. Biochar Environ Manag Sci Technol 1:1–12

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2005) Biochar sequestration in terrestrial ecosystems—a review. Mitigation Adapt Strat Global Change 11:403–427

    Google Scholar 

  • Li X, Hayashi JI, Li CZ (2006) FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 85:1700–1707

    CAS  Google Scholar 

  • Li F, Shen K, Long X, Wen J, Xie X, Zeng X, Zhong R (2016a) Preparation and characterization of biochars from Eichhornia crassipes for cadmium removal in aqueous solutions. PLoS ONE 11(2):e0148132

    Google Scholar 

  • Li F, Shen K, Long X, Wen J, Xie X, Zeng X, Zhong R (2016b) Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PLoS ONE 11(2):e0148132

    Google Scholar 

  • Li H, Dong X, da Silva EB, de Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478

    CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Luizao FJ, Engelhard MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72:6069–6078

    CAS  Google Scholar 

  • Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J, Emmerich K-H (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106

    CAS  Google Scholar 

  • Liu Z, Chen X, Jing Y, Li Q, Zhang J, Huang Q (2014) Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. CATENA 123:45–51

    CAS  Google Scholar 

  • Lu JB, Wu JG, Fu ZH, Zhu L (2007) Water hyacinth in China: a sustainability science-based management framework. Environ Manag 40:823–830

    Google Scholar 

  • Luo S, Xiao B, Hu Z, Liu S, Guo X, He M (2009) Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: influence of temperature and steam on gasification performance. Int J Hydrogen Energy 34:2191–2194

    CAS  Google Scholar 

  • Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46(15):7939–7954

    Google Scholar 

  • Martinez-Jimenez M, Gomez-Balandra MA (2007) Integrated control of Eichhornia crassipes by using insects and plant pathogens in Mexico. Crop Prot 26:1234–1238

    Google Scholar 

  • Masto RE, Kumar S, Rout TK, Sarkar P, George J, Ram LC (2013) Biochar from water hyacinth (Eichhornia crassipes) and its impact on soil biological activity. CATENA 111:64–71

    CAS  Google Scholar 

  • Mckendry P (2002) Energy production from biomass (Part 1): overview of biomass. Bioresour Technol 83(1):37–46

    CAS  Google Scholar 

  • McLaughlin H, Anderson PS, Shields FE, Reed TB (2009) All biochars are not created equal and how to tell them apart. In: Presented at: North Americal Biochars Conference, 9–12 August, Boulder, CO., USA

  • Méndez A, Paz-Ferreiro J, Gil E, Gascó G (2015) The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci Hortic (amsterd) 193:225–230

    Google Scholar 

  • Mitchell DS (1985) Surface-floating aquatic macrophytes. In: Denny P (ed) The ecology and management of african wetland vegetation. Dr. W. Junk Publishers, Dordrecht, pp 109–124

    Google Scholar 

  • Mosa A, El-Ghamry A, Tolba M (2018) Functionalized biochar derived from heavy metal rich feedstock: phosphate recovery and reusing the exhausted biochar as an enriched soil amendment. Chemosphere 198:351–363

    CAS  Google Scholar 

  • Muhammad N, Aziz R, Brookes PC, Xu J (2017) Impact of wheat straw biochar on yield of rice and some properties of Psammaquent and Plinthudult. J Soil Sci Plant Nutr 17(3):808–823

    CAS  Google Scholar 

  • Muigai HH, Bordoloi U, Hussain R, Ravi K, Moholkar VS, Kalita P (2021) A comparative study on synthesis and characterization of biochars derived from lignocellulosic biomass for their candidacy in agronomy and energy applications. Int J Energy Res 45(3):4765–4781

    CAS  Google Scholar 

  • Naeem MA, Khalid M, Aon M, Abbas G, Tahir M, Amjad M, Akhtar SS (2017) Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Arch Agron Soil Sci 63:2048–2061

    Google Scholar 

  • Nair VD, Nair PK, Dari B, Freitas AM, Chatterjee N, Pinheiro FM (2017) Biochar in the agroecosystem-climate-change-sustainability nexus. Front Plant Sci 8:2051

    Google Scholar 

  • Najmudeen TM, Arakkal Febna MA, Rojith G, Zacharia PU (2019) Characterization of biochar from water hyacinth (Eichhornia crassipes) and the effects of biochar on the growth of fish and paddy in integrated culture systems. J Coast Res 86:225–234

    CAS  Google Scholar 

  • Nguyen BT, Lehmann J (2009) Black carbon decomposition under varying water regimes. Org Geochem 40:846–853

    CAS  Google Scholar 

  • Nguyen BT, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH (2009) Long-term black carbon dynamics in cultivated soil. Biogeochem 92:163–176

    Google Scholar 

  • Nyamunda BC, Chivhanga T, Guyo U, Chigondo F (2019) Removal of Zn (II) and Cu (II) ions from industrial wastewaters using magnetic biochar derived from water hyacinth. J Eng 2019:5

    Google Scholar 

  • O’toole A, Moni C, Weldon S, Schols A, Carnol M, Bosman B, Rasse DP (2018) Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in Norway. Agric 8(11):171. https://doi.org/10.3390/agriculture8110171

    Article  CAS  Google Scholar 

  • Oladele SO (2019) Effect of biochar amendment on soil enzymatic activities, carboxylate secretions and upland rice performance in a sandy clay loam Alfisol of Southwest Nigeria. Sci Afr 4:00107

    Google Scholar 

  • Paetsch L, Mueller CW, Rumpel C, Angst S, Wiesheu AC, Girardin C, Ivleva NP, Niessner R, Kögel-Knabner I (2017) Multi-technique approach to assess the fate of high-temperature biochar in soil and to quantify its effect on soil organic matter composition. Org Geochem 122:177–186

    Google Scholar 

  • Pereira RC, Kaal J, Arbestain MC, Lorenzo RP, Aitkenhead W, Hedley M, Maciá-Agulló JA (2011) Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org Geochem 42(11):1331–1342

    Google Scholar 

  • Petersen-Rockney M (2015) Biochar in Temperate agricultural soils, excerpted by Jack Kittredge. The natural farmer special supplement on biochar in agriculture. Fall 2015:19–22

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533

    Google Scholar 

  • Reddy KR, Yargicoglu EN, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron Eng 140(9):04014047

    Google Scholar 

  • Rehman HA, Razzaq R (2017) Benefits of biochar on the agriculture and environment-a review. J Environ Anal Chem 4(3):1–3

    Google Scholar 

  • Renner R (2007) Rethinking biochar. Environ Sci Technol 41:5932–5933

    CAS  Google Scholar 

  • Rodriguez-Gallego LR, Mazzeo N, Gorga J, Meerhoff M, Clemente J, Kruk C, Scasso F, Lacerot G, Garcıa J, Quintans F (2004) The effects of an artificial wetland dominated by free-floating plants on the restoration of a subtropical, hypertrophic lake. Lakes Reserv 9:203–215

    CAS  Google Scholar 

  • Safaei Khorram M, Zhang Q, Lin D, Zheng Y, Fang H, Yu Y (2016) Biochar: a review of its impact on pesticide behavior in soil environments and its potential applications. J Environ Sci 44:269–279

    Google Scholar 

  • Saletnik B, Bajcar M, Zaguła G, Czernicka M, Puchalski C (2016) Impact of the biomass pyrolysis parameters on the quality of biocarbon obtained from rape straw, rye straw and willow chips. Econtechmod Int Q J Econ Technol Model Proc 5(2):139–143

    Google Scholar 

  • Sánchez-Reinoso AD, Ávila-Pedraza EÁ, Restrepo-Díaz H (2020) Use of biochar in agriculture. Acta Biol Colomb 25(2):327–338

    Google Scholar 

  • Scott AC, Glasspool IJ (2007) Observations and experiments on the origin and formation of inertinite group macerals. Int J Coal Geol 70:53–66

    CAS  Google Scholar 

  • Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A, Madhavan A, Alphonsa JA, Vivek N, Faraco V (2017) Water hyacinth a potential source for value addition: an overview. Bioresour Technol 230:152–162

    Google Scholar 

  • Singh KP (2005) Invasive alien species and biodiversity in India. Curr Sci 88(4):539–540

    Google Scholar 

  • Singh J, Kalamdhad AS (2012) Concentration and speciation of heavy metals during water hyacinth composting. Bioresour Technol 124:169–179

    CAS  Google Scholar 

  • Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Lentz RD (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41(4):973–989

    CAS  Google Scholar 

  • Téllez TR, López EMR, Granado GL, Pérez EA, López RM, Guzmán JMS (2008) The Water Hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquat Invasions 3(1):42–53. https://doi.org/10.3391/ai.2008.3.1.8

    Article  Google Scholar 

  • Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energy Rev 55:467–481

    CAS  Google Scholar 

  • Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH et al (2010) Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agric Food Chem 58: 5538–5544

    CAS  Google Scholar 

  • Uchimiya M, Chang SC, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190 (1–3):432–441

    CAS  Google Scholar 

  • Ulusal A, Varol EA, Bruckman VJ, Uzun BB (2020) Opportunity for sustainable biomass valorization to produce biochar for improving soil characteristics. Biomass Convers Biorefinery 2020:1–11

    Google Scholar 

  • UNEP (2013) Water hyacinth-can its aggressive invasion be controlled? UNEP United Nations Environment Programme. April 1, 2013. http://na.unep.net/geas/getUNEPPageWithArticleIDScript.php?article_id=98

  • Verheijen F, Jeffery S, Bastos AC, Velde Mvd, Diafas I (2009) Biochar application to soils—a critical scientific review of effects on soil properties, processes and functions. In: EUR 24099 EN Office for the Official Publications of the European Communities, Luxemburg, pp 149

  • Verma M, Godbout S, Brar SK, Solomatnikova O, Lemay SP, Larouche JP (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng 2012:1–18

    Google Scholar 

  • Villegas-Pangga G (2021) Production and characterization of biochars from slow Pyrolysis of different biomass materials to evaluate properties as soil mendments. Philipp J Sci 150(1):267–276

    Google Scholar 

  • Walkley A, Black IA (1934) Soil Sci, pp 29–38. In: Soil and Plant Analysis. By, C. S. Piper. (1966) Hans Publication, Bombay, pp 213–229

  • Wang B, Gao B, Fang J (2017) Recent advances in engineered biochar productions and applications. Critical reviews. Environ Sci Technol 47(22):2158–2207

    CAS  Google Scholar 

  • Wang G, Fan B, Chen H, Li Y (2020) Understanding the pyrolysis behavior of agriculture, forest and aquatic biomass: products distribution and characterization. J Energy Inst 93(5):1892–1900

    CAS  Google Scholar 

  • Wilson K (2014) How biochar works in soil. Biochar J 32:25–33

    Google Scholar 

  • Wilson JR, Holst N, Rees M (2005) Determinants and patterns of population growth in water hyacinth. Aquat Bot 81(1):51–67

    Google Scholar 

  • Xiao R, Yang W (2013) Influence of temperature on organic structure of biomass pyrolysis products. Renew Energy 50:136–141

    CAS  Google Scholar 

  • Xu Z, Xing Y, Ren A, Ma D, Li Y, Hu S (2020) Study on adsorption properties of water hyacinth-derived biochar for uranium (VI). J Radio Analyt Nuclear Chem 324(3):1317–1327

    CAS  Google Scholar 

  • Yin D, Wang X, Chen C, Peng B, Tan C, Li H (2016) Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere 152:196–206

    CAS  Google Scholar 

  • Yuan P, Wang J, Pan Y, Shen B, Wu C (2019) Review of biochar for the management of contaminated soil: preparation, application and prospect. Sci Total Environ 659:473–490

    CAS  Google Scholar 

  • Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23(5):431–452

    Google Scholar 

  • Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012) Synthesis, characterization and environmental implications of graphene-coated biochar. Sci Total Environ 435:567–572

    Google Scholar 

  • Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S (2015) Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manag 153:68–73

    CAS  Google Scholar 

  • Zhao J, Shen XJ, Domene X, Alcañiz JM, Liao X, Palet C (2019) Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci Rep 9(1):1–12

    Google Scholar 

  • Zheng JC, Liu HQ, Feng HM, Li WW, Lam MHW, Lam PKS, Yu HQ (2016) Competitive sorption of heavy metals by water hyacinth roots. Environ Poll 219:837–845

    CAS  Google Scholar 

  • Zhou W, Zhu D, Langdon A, Li L, Liao S, Tan L (2009) The structure characterization of cellulose xanthogenate derived from the straw of Eichhornia crassipes. Bioresour Technol 100:5366–5369

    CAS  Google Scholar 

  • Zhou R, Zhang M, Li J, Zhao W (2020) Optimization of preparation conditions for biochar derived from water hyacinth by using response surface methodology (RSM) and its application in Pb2+ removal. J Environ Chem Eng 8(5):104198

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Bauddh.

Ethics declarations

Conflict of interest

There is no any conflict of Interest.

Informed consent

I ensure that all the authors mentioned in the manuscript have agreed for authorship, read and approved the manuscript, and given consent for submission and subsequent publication of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, K., Swain, A.A., Kumar, M. et al. Utilization of Eichhornia crassipes biomass for production of biochar and its feasibility in agroecosystems: a review. Environmental Sustainability 4, 285–297 (2021). https://doi.org/10.1007/s42398-021-00185-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-021-00185-7

Keywords

Navigation