Skip to main content

Advertisement

Log in

Valorization of agricultural wastes for production of biocatalysts of environmental significance: towards a sustainable environment

  • Mini Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Generation of wastes from agricultural practices and products has continued to increase globally, with resultant stockpiling in the environment. The buildup of wastes from crop products and poultry farming is indeed an environmental challenge. Therefore, conversion of these wastes to value-added products could deter the deleterious effects on the environment. Valorization of agro-industrial wastes is multifaceted but this review focuses on microbial utilization of agricultural wastes for production of biocatalysts of environmental significance including ligninolytic, (hemi) cellulolytic and keratinolytic enzymes. The review prospects into exploring the natural ecosystem for new microbial strains with versatile agrowaste utilization capacity. This review also accentuates the need to explore microbial diversity and complex microbial interactions for the development of agrowaste degrader consortia while highlighting genetic engineering and nanotechnology as promising tools towards improving the catalytic efficiency of environmentally-relevant enzymes. Development of bioprocess for optimum utilization of a broad range of agricultural wastes would be a step in the right direction towards a cleaner and sustainable environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Data generated or analyzed during this study are included in this article.

References

  • Adhyaru DN, Bhatt NS, Modi HA (2015) Optimization of upstream and downstream process parameters for cellulase-poor-thermosolvent-stable xylanase production and extraction by Aspergillus tubingensis FDHN1. Bioresour Bioprocess 2:3. https://doi.org/10.1186/s40643-014-0029-1

    Article  Google Scholar 

  • Adrio JL, Demain AL (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30:187–214

    Article  CAS  Google Scholar 

  • Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4:178–185

    Google Scholar 

  • Ahmed A, Sattar A, Pirah S, Khushk I, Klykov SP, Haider C, Lu C (2018) Anintegrated bioprocess for xylanase production from agriculture waste under open non-sterilized conditions: biofabrication as fermentation tool. J Clean Prod 193:194–205. https://doi.org/10.1016/j.jclepro.2018.05.020

    Article  CAS  Google Scholar 

  • Ali M, Husain Q, Alam N, Ahmad M (2017) Enhanced catalytic activity and stability of ginger peroxidase immobilized on amino-functionalized silica-coated titanium dioxide nanocomposite: a cost-effective tool for bioremediation. Water Air Soil Pollut 228:22. https://doi.org/10.1007/s11270-016-3205-4

    Article  CAS  Google Scholar 

  • Apriceno A, Silvestro L, Girelli A, Francolini L, Pietrelli L, Piozzi A (2021) Preparation and characterization of chitosan-coated manganese-ferrite nanoparticles conjugated with laccase for environmental bioremediation. Polymers 13:1453. https://doi.org/10.3390/polym13091453

    Article  CAS  Google Scholar 

  • Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L (2021) Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Fact 20:20. https://doi.org/10.1186/s12934-021-01510-9

    Article  CAS  Google Scholar 

  • Atalla SMM, Ahmed NE, Awad HM, El Gamal NG, El Shamy AR (2020) Statistical optimization of xylanase production, using different agricultural wastes by Aspergillus oryzae MN894021, as a biological control of faba bean root diseases. Egypt J Biol Pest Control 30:125. https://doi.org/10.1186/s41938-020-00323-z

    Article  Google Scholar 

  • Bajaj BK, Sharma M, Rao RS (2014) Agricultural residues for production of cellulase from Sporotrichum thermophile LAR5 and its application for saccharification of rice straw. J Mater Environ Sci 5:1454–1460

    Google Scholar 

  • Bandikari R, Poondla V, Obulam VSR (2014) Enhanced production of xylanase by solid state fermentation using Trichoderma koeningi isolate: effect of pretreated agro-residues. 3 Biotech 4:655–664. https://doi.org/10.1007/s13205-014-0239-4

    Article  Google Scholar 

  • Bebic J, Banjanac K, Corovic M, Milivojevic A, Simovic M, Marinkovic A, Bezbradica D (2020) Immobilization of laccase from Myceliophthora thermophila on functionalized silica nanoparticles: optimization and application in lindane degradation. Chin J Chem Eng 28:1136–1144

    Article  Google Scholar 

  • Bharathiraja S, Suriya J, Krishnan M, Manivasagan P, Kim S-K (2017) Production of enzymes from agricultural wastes and their potential industrial applications. advances in food and nutrition research. Elsevier, Oxford, pp 125–148

    Google Scholar 

  • Bhardwaj N, Kumar B, Verma PA (2019) A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess 6:40

    Article  Google Scholar 

  • Bibi Z, Ansari A, Zohra RR, Aman A, Qader UI, SA, (2014) Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillusstearothermophilus KIBGE-IB29. J Radiat Res Appl Sci 7:478–485. https://doi.org/10.1016/j.jrras.2014.08.001

    Article  Google Scholar 

  • Chaturvedi V, Agrawal K, Verma P (2021) Chicken feathers: a treasure cove of useful metabolites and value-added products. Environ Sustain. https://doi.org/10.1007/s42398-021-00160-2

    Article  Google Scholar 

  • Chen S, Huang Z, Wu J, Chen Y, Ye F, Zhang C et al (2013) Combination of site-directed mutagenesis and calcium ion addition for enhanced production of thermostable MBP-fused heparinase I in recombinant Escherichia coli. Appl Microbiol Biotechnol 97:2907–2916

    Article  CAS  Google Scholar 

  • Chimbekujwo KI, Ja’afaru MI, Adeyemo OM (2020) Purification, characterization and optimization conditions of protease produced by Aspergillus brasiliensis strain BCW2. Sci Afr 8:e00398

    Google Scholar 

  • Cilerdzic J, Stajic M, Vukojevic J (2016) Degradation of wheat straw and oak sawdust by Ganoderma applanatum. Int Biodeter Biodegr 114:39–44

    Article  CAS  Google Scholar 

  • Darwesh OM, Matter IA, Eida MF (2018) Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. J Envron Chem Eng. https://doi.org/10.1016/j.jece.2018.11.049

    Article  Google Scholar 

  • Falade AO, Ekundayo CT (2021) Emerging biotechnological potentials of DyP-type peroxidases in remediation of lignin wastes and phenolic pollutants: a global assessment (2007–2019). Lett Appl Microbiol 72:13–23

    Article  CAS  Google Scholar 

  • Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. Microbiol Open 6:e00394

    Article  Google Scholar 

  • Falade AO, Mabinya LV, Okoh AI, Nwodo UU (2018) Ligninolytic enzymes: versatile biocatalysts for the elimination of endocrine-disrupting chemicals in wastewater. Microbiol Open 7:e722. https://doi.org/10.1002/mbo3.722

    Article  CAS  Google Scholar 

  • Falade AO, Jaouani A, Mabinya LV, Okoh AI, Nwodo UU (2019a) Exoproduction and molecular characterization of peroxidase from Ensifer adhaerens. Appl Sci 9:3121

    Article  CAS  Google Scholar 

  • Falade AO, Mabinya LV, Okoh AI, Nwodo UU (2019b) Agrowastes utilization by Raoultella ornithinolytica for optimal extracellular peroxidase activity. Biotechnol Appl Biochem 66:60–67

    Article  CAS  Google Scholar 

  • Falade AO, Mabinya LV, Okoh AI, Nwodo UU (2020) Agroresidues enhanced peroxidase activity expression by Bacillus sp. MABINYA-1 under submerged fermentation. Bioresour Bioprocess 7:55

    Article  Google Scholar 

  • Feng W, Ji P (2011) Enzymes immobilized on carbon nanotubes. Biotechnol Adv 29:889–895

    Article  CAS  Google Scholar 

  • Francisco JA, Stathopoulos C, Warren RA, Kilburn DG, Georgiou G (1993) Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Biotechnology (NY) 11:491–495. https://doi.org/10.1038/nbt0493-491

    Article  CAS  Google Scholar 

  • Gupta MN, Kaloti M, Kapoor M, Solanki K (2011) Nanomaterials as matrices for enzyme immobilization. Artif Cells Blood Substit Biotechnol 39:98–109

    Article  CAS  Google Scholar 

  • Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass. Vol. 2 Results of screening for potential candidates from biorefinery lignin. US Department of Energy report PNNL-16983

  • Huang J, Cao Y, Liu Z et al (2012) Efficient removal of heavy metal ions from water system by titanate nanoflowers. Chem Eng J 180:75–80

    Article  CAS  Google Scholar 

  • Huang GL, Anderson TD, Clubb RT (2014) Engineering microbial surfaces to degrade lignocellulosic biomass. Bioengineered 5:96–106

    Article  Google Scholar 

  • Jadhav P, Pathade G (2019) Degradation of feathers by bacterial consortium and its application in seed germination. Int Res J Biol Sci 8:20–23

    Google Scholar 

  • Jenkins S, Quer AM, Fonseca C, Varrone C (2020) Microbial degradation of plastics: new plastic degraders, mixed cultures and engineering strategies. In: Jamil N, Kumar P, Batool R (eds) Soil microenvironment for bioremediation and polymer production. Scrivener Publishing LLC, pp 213–238

  • Kar S, Gauri SS, Das A, Jana A, Maity C, Mandal A, Mohapatra PKD, Pati BR, Mondal KC (2013) Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SMF. Bioprocess Biosyst Eng 36:57–68

    Article  CAS  Google Scholar 

  • Karataş H, Uyar F, Tolan V, Baysal Z (2012) Optimization and enhanced production of α-amylase and protease by a newly isolated Bacillus licheniformis ZB-05 under solid-state fermentation. Ann Microbiol. https://doi.org/10.1007/s13213-012-0443-6

    Article  Google Scholar 

  • Karaveli O, Deniz I (2021) Key challenges of microbial degradation of keratinous wastes. Protein J. https://doi.org/10.1007/s10930-021-09966-9

    Article  Google Scholar 

  • Kumar V, Chhabra D, Shukla P (2017) Xylanase production from Thermomyces lanuginosus VAPS-24 using low cost agrow-industrial residues via hybrid optimization tools and its potential use for saccharification. Bioresour Technol 243:1009–1019. https://doi.org/10.1016/biortech.2017.07.094

    Article  CAS  Google Scholar 

  • Li Q (2019) Progress in microbial degradation of feather waste. Front Microbiol 10:2717. https://doi.org/10.3389/fmicb.2019.02717

    Article  Google Scholar 

  • Li H, Hou J, Duan L et al (2010) Graphene oxide-enzyme hybrid nanoflowers for efficient water soluble dye removal. ACS Nano 4:7358–7362

    Article  Google Scholar 

  • Mahmoodi NM, Saffar-Dastgerdi MH (2019) Clean laccase immobilized nanobiocatalysts (graphene oxide-zeolite nanocomposites): from production to detailed biocatalytic degradation of organic pollutant. Appl Catal B-Environ. https://doi.org/10.1016/j.apcatb.2019.118443

    Article  Google Scholar 

  • Melnichuk N, Braia MJ, Anselmi PA, Meini M-R, Romanini D (2020) Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation. Waste Manage 106:155–161

    Article  CAS  Google Scholar 

  • Mitri S, Richard FK (2013) The genotypic view of social interactions in microbial communities. Annu Rev Gen 47:247–273

    Article  CAS  Google Scholar 

  • Muñoz-Gutiérrez I, Oropeza R, Gosset G, Martinez A (2012) Cell surface display of a β-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol. J Ind Microbiol Biotechnol 39:1141–1152. https://doi.org/10.1007/s10295-012-1122-0

    Article  CAS  Google Scholar 

  • Muthukumarasamy NP, Jackson B, Raj AJ, Sevanan M (2015) Production of extracellular laccase from Bacillus subtilis MTCC 2414 using agroresidues as a potential substrate. Biochem Res Int 2015:765190. https://doi.org/10.1155/2015/765190

    Article  CAS  Google Scholar 

  • Neelkant KS, Shankar K, Jayalakshmi SK, Sreeramulu K (2019) Optimization of conditions for the production of lignocellulolytic enzymes by Sphingobacterium sp. ksn-11 utilizing agro-wastes under submerged condition. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2019.1643735

    Article  Google Scholar 

  • Nnolim NE, Nwodo UU (2020) Bacillus sp. CSK2 produced thermostable alkaline keratinase using agro-wastes: keratinolytic enzyme characterization. BMC Biotechnol 20:65. https://doi.org/10.1186/s12896-020-00659-2

    Article  CAS  Google Scholar 

  • Nnolim NE, Udenigwe CC, Okoh AI, Nwodo UU (2020c) Microbial keratinase: next generation green catalyst and prospective applications. Front Microbiol 11:580164. https://doi.org/10.3389/fmicb.2020.580164

    Article  Google Scholar 

  • Nnolim NE, Ntozonke N, Okoh AI, Nwodo UU (2020b) Exoproduction and characterization of a detergent-stable alkaline keratinase from Arthrobacter sp. KFS-1. Biochimie 177:53–62

    Article  CAS  Google Scholar 

  • Nnolim NE, Mpaka L, Okoh AI, Nwodo UU (2020a) Biochemical and molecular characterization of a thermostable alkaline metallo-keratinase from Bacillus sp. Nnolim-K1. Microorganisms 8:1304. https://doi.org/10.3390/microorganisms8091304

    Article  CAS  Google Scholar 

  • Nnolim NE, Okoh AI, Nwodo UU (2021) Elucidation of coding gene and characterization of alkaline metallo-keratinase produced by acidophilic Bacillus sp. Okoh-K1 grown on chicken feather. Environ Technol Innov 21:101285

    Article  CAS  Google Scholar 

  • Pang R, Li M, Zhang C (2015) Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation. Talanta 131:38–45

    Article  CAS  Google Scholar 

  • Peng Z, Mao X, Zhang J, Du G, Chen J (2019) Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microb Cell Fact 18:84. https://doi.org/10.1186/s12934-019-1134-9

    Article  CAS  Google Scholar 

  • Perperopoulou F, Fragoulaki M, Papageorgiou AC, Labrou NE (2021) Directed evolution of a glutathione transferase for the development of a biosensor for Alachlor determination. Symmetry 13:461. https://doi.org/10.3390/sym13030461

    Article  Google Scholar 

  • Saratale GD, Kshirsagar SD, Sampange VT, Saratale RG, Oh S-E, Govindwar SP, Oh M-K (2014) Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-014-1227-1

    Article  Google Scholar 

  • Sethi BK, Jana A, Nanda PK, Das Mohapatra PK, Sahoo SL (2016) Thermostable acidic protease production in Aspergillus terreus NCFT 4269.10 using chickling vetch peels. J Taibah Univ Sci 10:571–583

    Article  Google Scholar 

  • Sharifi M, Karim AY, Nanakali NMQ, Salihi A, Aziz FM, Hong J, Khan RH, Saboury AA, Hasan A, Abou-zied OK, Falahti M (2019) Strategies for enzyme immobilization on nanomatrix supports and intracellular delivery of enzymes. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2019.1643787

    Article  Google Scholar 

  • Shende P, Kasture P, Gaud RS (2018) Nanoflowers: the future trend of nanotechnology for multi-applications. Artif Cells Nanomed Biotechnol 46:413–422

    Article  CAS  Google Scholar 

  • Shradhdha S, Murty DS (2020) Production of lignolytic and cellulolytic enzymes by using basidiomycetes fungi in the solid state fermentation of different agro-residues. Res J Biotech 15:10–17

    CAS  Google Scholar 

  • Siddeeg SM, Tahoon MA, Mnif W, Rebah FB (2020) Iron oxide/chitosan magnetic nanocomposite immobilized manganese peroxidase for decolorization of textile wastewater. Processes 8:5. https://doi.org/10.3390/pr8010005

    Article  CAS  Google Scholar 

  • Sreena CP (2020) Arecanut husk: a potential feedstock for enhanced production of endoglucanase by Bacillus subtilis MU S1. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.100989

    Article  Google Scholar 

  • Tamano K (2014) Enhancing microbial metabolite and enzyme production: current strategies and challenges. Front Microbiol 5:1–5

    Article  Google Scholar 

  • Thiribhuvanamala G, Kalaiselvi G, Parthasarathy S, Anusha B (2017) Induction of lignolytic enzyme activities in different agro residues by the white rot fungi, Pleurotus Sajar-Caju. Int J Chem Stud 5:89–94

    CAS  Google Scholar 

  • Tian J, Feng J, Wang Y, Lu J, Mao L, Chu J (2020) A newly isolated Cerrena unicolor capable of laccase production and lignin degradation in agricultural wastes. Rese Square. https://doi.org/10.21203/rs.3.rs-122812/v1

    Article  Google Scholar 

  • Unuofin JO, Okoh AI, Nwodo UU (2019a) Maize stover as feedstock for enhanced laccase production by two gammaproteobacteria: a solution to agroindustrial waste stockpiling. Ind Crops Prod 129:611–623

    Article  CAS  Google Scholar 

  • Unuofin JO, Okoh AI, Nwodo UU (2019b) Utilization of agroindustrial wastes for the production of laccase by Achromobacter xylosoxidans HWN16 and Bordetella bronchiseptica HSO16. J Environ Manage 231:222–231

    Article  CAS  Google Scholar 

  • Unuofin JO, Falade AO, Aladekoyi OJ (2020) Applications of microbial laccases in bioremediation of environmental pollutants: potential issues, challenges and prospects. In: Saxena G, Kumar V, Shah MP (eds) bioremediation for environmental sustainability: toxicity, mechanisms of contaminants degradation, detoxification, and challenges. Elsevier, Oxford, pp 519–540

    Google Scholar 

  • Varrone C, Skiadas IV, Gavala HN (2018) Effect of hydraulic retention time on the modelling and optimization of joint 1, 3 PDO and BuA production from 2G glycerol in a chemostat process. Chem Eng J 347:525–534

    Article  CAS  Google Scholar 

  • Vats A, Mishra S (2017) Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues /domestic wastes and proposed pathway of degradation of kiton blue A and reactive orange 16. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-8802-2

    Article  Google Scholar 

  • Verma ML, Kumar S, Das A, Randhava JS, Chamundeeswari M (2019) Enzyme immobilization on chitin and chitosan-based supports for biotechnological applications. In: Crini G, Lichtfouse E (eds) Sustainable agriculture review 35. Springer Nature, Switzerland AG, pp 147–173

  • Vijayaraghavan P, Vincent SGP (2014) Statistical optimization of fibrinolytic enzyme production using agroresidues by Bacillus cereus ind1 and its thrombolytic activity in vitro. BioMed Res Int 2014:725064. https://doi.org/10.1155/2014/725064

    Article  Google Scholar 

  • Wang C, Huang R, He B, Du Q (2012) Improving the thermostability of alpha-amylase by combinatorial coevolving-site saturation mutagenesis. BMC Bioinform 13:263

    Article  Google Scholar 

  • Yang H, Li J, Du G, Liu L (2017) Microbial production and molecular engineering of industrial enzymes: challenges and strategies Biotechnology of microbial enzymes. Elsevier, Oxford, pp 151–165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AOF conceptualized the paper and wrote the manuscript.

Corresponding author

Correspondence to Ayodeji O. Falade.

Ethics declarations

Conflict of interest

Author declares no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PNG 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falade, A.O. Valorization of agricultural wastes for production of biocatalysts of environmental significance: towards a sustainable environment. Environmental Sustainability 4, 317–328 (2021). https://doi.org/10.1007/s42398-021-00183-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-021-00183-9

Keywords

Navigation