Skip to main content

Advertisement

Log in

Microbes as a boon for the bane of heavy metals

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Modern globalisation has escalated anthropocentric sources for heavy metal contamination in diverse natural habitats. Pernicious nature of heavy metals poses a major threat to all life forms in the environment. Heavy metals are not degradable like the organic pollutants but could be transformed to be persistent in a less toxic form. Microbes are the cheap tool as they evolve rapidly to combat heavy metal stress by developing various survival strategies, for instance sequestration or active transportation of metal. Their short generation time, large surface area and ease of genetic manipulation makes them ideal candidates to use for the bioremediation process. Many heavy metal resistant microbes such as species of Bacillus, Pseudomonas, Acidothiobacillus, Saccharomyces, Geobacter and Rhizophus have been used for remediation of heavy metal contaminated sites. The effectiveness of bioremediation technique depends upon various factors, including biotic as well as abiotic, which mainly determine bio-availability of metal for remediation. The different metal microbe interactions such as sorption, accumulation, mineralization, transformation and solubilization are responsible for tapering heavy metal concentration at various loci or sites. The review emphasizes on the different interactions of the microbes with heavy metals, their survival strategies and the applications of the resistant strains in remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas G et al (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Google Scholar 

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3:74–102

    Google Scholar 

  • Abdu N, Abdullahi AA, Abdulkadir AJEC (2017) Heavy metals and soil microbes. Enviorn Chem Lett 15:65–84

    CAS  Google Scholar 

  • Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201:178–184

    Google Scholar 

  • Ackerley D, Gonzalez C, Keyhan M, Blake R, Matin A (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860

    CAS  Google Scholar 

  • Ahalya N, Ramachandra T, Kanamadi R (2003) Biosorption of heavy metals. Res J Chem Environ 7:71–79

    CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    CAS  Google Scholar 

  • Aksu Z, Kutsal T (1990) A comparative study for biosorption characteristics of heavy metal ions with C. vulgaris. Environ Technol 11:979–987

    CAS  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. https://doi.org/10.1155/2019/6730305

    Article  Google Scholar 

  • Arıca MY, Kacar Y, Genç Ö (2001) Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Biores Technol 80:121–129

    Google Scholar 

  • Aronson JK (2015) Meyler's side effects of drugs: the international encyclopedia of adverse drug reactions and interactions. Elsevier, Amsterdam

    Google Scholar 

  • Arsène-Ploetze F et al (2010) Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 6:1000859

    Google Scholar 

  • Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Bot 2012:1–6

    Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180

    Google Scholar 

  • Basha SA, Rajaganesh K (2014) Microbial bioremediation of heavy metals from textile industry dye effluents using isolated bacterial strains. Int J Curr Microbiol App Sci 3:785–794

    Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    CAS  Google Scholar 

  • Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Ferard C (2011) Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geosci 343:160–167

    CAS  Google Scholar 

  • Brandl H (2001) Microbial leaching of metals. Biotechnology 10:191–224

    CAS  Google Scholar 

  • Brandl H, Lehmann S, Faramarzi MA, Martinelli D (2008) Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94:14–17

    CAS  Google Scholar 

  • Braud A, Jézéquel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut Focus 6:261–279

    CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    CAS  Google Scholar 

  • Chandrangsu P, Rensing C, Helmann JD (2017) Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 15:338

    CAS  Google Scholar 

  • Chang J-S, Hong JJJob (1995) Estimation of kinetics of mercury detoxification from low-inoculum batch cultures of Pseudomonas aeruginosa PU21 (Rip64). J Biotechnol 42:85–90

    CAS  Google Scholar 

  • Chanmugathas P, Bollag J-M (1988) A column study of the biological mobilization and speciation of cadmium in soil. Arch Environ Contam Toxicol 17:229–237

    CAS  Google Scholar 

  • Chaouni LB-A, Etienne J, Greenland T, Vandenesch F (1996) Nucleic acid sequence and affiliation of pLUG10, a novel cadmium resistance plasmid from Staphylococcus lugdunensis. Plasmid 36:1–8

    CAS  Google Scholar 

  • Chaudhary A, Shirodkar S, Sharma A (2017) Characterization of nickel tolerant bacteria isolated from heavy metal polluted glass industry for its potential role in bioremediation. Soil Sediment Contam Int J 26:184–194

    CAS  Google Scholar 

  • Chen P, Li J, Wang H-Y, Zheng R-L, Sun G-X (2017) Evaluation of bioaugmentation and biostimulation on arsenic remediation in soil through biovolatilization. Environ Sci Pollut Res 24:21739–21749

    CAS  Google Scholar 

  • Cheng Y, Holman H-Y, Lin Z (2012) Remediation of chromium and uranium contamination by microbial activity. Elements 8:107–112

    CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36:299–307

    CAS  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    CAS  Google Scholar 

  • DalCorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci 20:3412

    CAS  Google Scholar 

  • Das P, Samantaray S, Rout G (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    CAS  Google Scholar 

  • Das S, Dash HR, Chakraborty J (2016) Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 100:2967–2984

    CAS  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213

    CAS  Google Scholar 

  • De S, Ghosh S (2018) Potential risks associated with bacterial strains isolated from heavy metal rich soil of a landfill area. Int Res J Eng Technol (IRJET) 5(8):355–357

    Google Scholar 

  • del Carmen V-G, López MJ, Suárez-Estrella F, Moreno J (2012) Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Sci Total Environ 431:62–67

    Google Scholar 

  • Diesel E, Schreiber M, van der Meer JRJA (2009) Development of bacteria-based bioassays for arsenic detection in natural waters. Chem B 394:687–693

    CAS  Google Scholar 

  • Domínguez-Bocanegra A, Torres-Muñoz J, Aguilar López R (2013) Biosorption of Cadmium (II), Lead (II) and Nickel (II) by Spirulina Maxima. Int J Sci 2:1–11

    Google Scholar 

  • Eslami E, Joodat SHS (2018) Bioremediation of oil and heavy metal contaminated soil in construction sites: a case study of using bioventing-biosparging and phytoextraction techniques arXiv preprint arXiv:180603717

  • French C et al (2007) Arsenic biosenseor: a step further. BMC Syst Biol 1:1–2

    Google Scholar 

  • Gadd G (2008) Bacterial and fungal geomicrobiology: a problem with communities? Geobiology 6:278–284

    CAS  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840

    CAS  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 84:13–28

    CAS  Google Scholar 

  • Gallois N et al (2018) Proteogenomic insights into uranium tolerance of a Chernobyl's Microbacterium bacterial isolate. J Proteom 177:148–157

    CAS  Google Scholar 

  • George B, Nirmal Kumar J, Kumar RN, Sajish P (2012) Biosorption potentiality of living Aspergillus niger tiegh in removing heavy metal from aqueous solution. Bioremediat J 16:195–203

    CAS  Google Scholar 

  • Ghavidel A, Rad SN, Alikhani HA, Sharari M, Ghanbari A (2018) Bioleaching of heavy metals from sewage sludge, direct action of Acidithiobacillus ferrooxidans or only the impact of pH? J Mater Cycles Waste Manage 20:1179–1187

    CAS  Google Scholar 

  • Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77:3938–3951

    CAS  Google Scholar 

  • Gogada R et al (2015) Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors. Appl Microbiol Biotechnol 99:9203–9213

    CAS  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2006) Arsenic phytoextraction and hyperaccumulation by fern species. Scientia Agricola 63:90–101

    CAS  Google Scholar 

  • Govarthanan M, Lee K-J, Cho M, Kim JS, Kamala-Kannan S, Oh B-T (2013) Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere 90:2267–2272

    CAS  Google Scholar 

  • Gupta V, Rastogi A (2008) Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153:759–766

    CAS  Google Scholar 

  • Hamer DH (1986) Metallothionein. Ann Rev Biochem 55:913–951

    CAS  Google Scholar 

  • Hansda A, Kumar V (2016) A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol 32:170

    Google Scholar 

  • Hazen TC (2010) In situ groundwater bioremediation. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag, Berlin, Heidelberg, pp 2583–2595. https://doi.org/10.1007/978-3-540-77587-4_191

    Chapter  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1985) Cadmium resistance in Pseudomonas putida: growth and uptake of cadmium. Microbiology 131:2539–2544

    CAS  Google Scholar 

  • Huang C, Huang C (1996) Application of Aspergillus oryze and Rhizopus oryzae for Cu (II) removal. Water Res 30:1985–1990

    CAS  Google Scholar 

  • Ilhan S, Nourbakhsh MN, Kiliçarslan S, Ozdag H (2004) Removal of chromium, lead and copper ions from industrial waste waters by Staphylococcus saprophyticus. Turkish Electron J Biotechnol 2:50–57

    Google Scholar 

  • Irawati W, Soraya Y, Baskoro AH (2012) A study on mercury-resistant bacteria isolated from a gold mine in Pongkor Village Bogor, Indonesia HAYATI. J Biosci 19:197–200

    Google Scholar 

  • James AK et al (2020) Rethinking the Minamata tragedy: what mercury species was really responsible? Environ Sci Technol 54:2726–2733

    CAS  Google Scholar 

  • Jarosławiecka A, Piotrowska-Seget Z (2014) Lead resistance in micro-organisms. Microbiology 160:12–25

    Google Scholar 

  • Joe M-H, Lee K-H, Lim S-Y, Im S-H, Song H-P, Lee IS, Kim D-H (2012) Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans. Bioprocess Biosyst Eng 35:265–272

    CAS  Google Scholar 

  • Kavitha A (2014) Extraction of precious metals from e-waste. J Chem Pharm Sci 974:2115–2124

    Google Scholar 

  • Keith S, Faroon O, Roney N et al (2013) Toxicological profile for uranium. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US)

  • Klerks PL, Weis JS (1987) Genetic adaptation to heavy metals in aquatic organisms: a review. Environ Pollut 45:173–205

    CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    CAS  Google Scholar 

  • Kratochvil D, Volesky B, Demopoulos G (1997) Optimizing Cu removal/recovery in a biosorption column. Water Res 31:2327–2339

    CAS  Google Scholar 

  • Kuivenhoven M, Mason K (2019) Arsenic (arsine) toxicity. StatPearls. StatPearls Publishing, Treasure Island

    Google Scholar 

  • Kulakovskaya T (2018) Inorganic polyphosphates and heavy metal resistance in microorganisms. World J Microbiol Biotechnol 34:139

    Google Scholar 

  • Kulkarni SJ, Kaware DJP (2013) A review on research for cadmium removal from effluent. Int J Eng Sci Innov Technol (IJESIT) 2(465):469

    Google Scholar 

  • Kumar A, Prasad MNV (2018) Plant-lead interactions: transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicol Environ Saf 166:401–418

    CAS  Google Scholar 

  • Kumar S, Verma N, Singh AK (2017) Development of cadmium specific recombinant biosensor and its application in milk samples. Sens Actuators B Chem 240:248–254

    CAS  Google Scholar 

  • Kumar V, Singh J, Kumar P (2019) Heavy metals accumulation in crop plants: Sources, response mechanisms, stress tolerance and their effects. Contam Agric Environ Health Risks Remed 1:38

    Google Scholar 

  • Lahkar M, Bhattacharyya K (2019) Heavy metal contamination of groundwater in Guwahati city, Assam, India (IRJET), pp 1520–1525

  • Lehmann M, Riedel K, Adler K, Kunze G (2000) Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae. Sens Biosens Bioelectron 15:211–219

    CAS  Google Scholar 

  • Levinson HS, Mahler I, Blackwelder P, Hood T (1996) Lead resistance and sensitivity in Staphylococcus aureus. FEMS Microbiol Lett 145:421–425

    CAS  Google Scholar 

  • Liao VHC, Ou KL (2005) Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environ Toxicol Chem Int J 24:1624–1631

    CAS  Google Scholar 

  • Limcharoensuk T, Sooksawat N, Sumarnrote A, Awutpet T, Kruatrachue M, Pokethitiyook P, Auesukaree C (2015) Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicol Environ Saf 122:322–330

    CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    CAS  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford

    Google Scholar 

  • Macaskie LE, Dean AC, Cheetham AK, Jakeman RJ, Skarnulis AJ (1987) Cadmium accumulation by a Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. Microbiology 133:539–544

    CAS  Google Scholar 

  • Margesin R, Płaza GA, Kasenbacher S (2011) Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere 82(11):1583–1588

    CAS  Google Scholar 

  • Martinez RJ, Beazley MJ, Taillefert M, Arakaki AK, Skolnick J, Sobecky PA (2007) Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide-and metal-contaminated subsurface soils. Environ Microbiol 9:3122–3133

    CAS  Google Scholar 

  • Massoud R, Hadiani MR, Hamzehlou P, Khosravi-Darani K (2019) Bioremediation of heavy metals in food industry: application of Saccharomyces cerevisiae. Electron J Biotechnol 37:56–60

    CAS  Google Scholar 

  • Mazia D, Mullins LJJN (1941) Radioactive copper and the mechanism of oligodynamic action. Nature 147:642–642

    CAS  Google Scholar 

  • Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 71:5532–5543

    CAS  Google Scholar 

  • Mishra S, Doble M (2008) Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity. Ecotoxicol Environ Saf 71:874–879

    CAS  Google Scholar 

  • Morcillo F, González-Munoz M, Reitz T, Romero-González M, Arias J (2014) Biosorption and biomineralization of U (VI) by the marine bacterium. PLoS One 9(3):e91305

    Google Scholar 

  • Müller B, Burgstaller W, Strasser H, Zanella A, Schinner F (1995) Leaching of zinc from an industrial filter dust with penicillium, pseudomonas and corynebacterium: citric acid is the leaching agent rather than amino acids. J Ind Microbiol 14:208–212

    Google Scholar 

  • Müller HJZFB (1985) Oligodynamic action of 17 different metals on Bacillus subtilis, Enterobacteriaceae, Legionellaceae, Micrococcaceae and Pseudomonas aeruginosa. Mikrobiologie und Hygiene Serie B, Umwelthygiene, Krankenhaushygiene, Arbeitshygiene, praventive Medizin 182:95–101

    Google Scholar 

  • Naik M, Khanolkar D, Dubey S (2013) Lead-resistant Providencia alcalifaciens strain 2 EA bioprecipitates Pb+ 2 as lead phosphate. Lett Appl Microbiol 56:99–104

    CAS  Google Scholar 

  • Nanda M, Kumar V, Sharma D (2019) Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’heavy metals contaminants from water. Aquat Toxicol 212:1–10

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    CAS  Google Scholar 

  • Nriagu JO (2019) Encyclopedia of environmental health. Elsevier, pp 504–508

  • Olafson R, Sim R, Boto KJCB (1979) Isolation and chemical characterization of the heavy metal-binding protein metallothionein from marine invertebrates. Biochem PPBC 62:407–416

    Google Scholar 

  • Osmani M, Bani A, Hoxha B (2015) Heavy metals and Ni phytoextractionin in the metallurgical area soils in Elbasan Albanian. J Agric Sci 14:414

    CAS  Google Scholar 

  • Pagnanelli F, Esposito A, Vegliò F (2002) Multi-metallic modelling for biosorption of binary systems. Water Res 36:4095–4105

    CAS  Google Scholar 

  • Panda J, Sarkar P (2012) Isolation and identification of chromium-resistant bacteria: test application for prevention of chromium toxicity in plant. J Environ Sci Health Part A 47:237–244

    CAS  Google Scholar 

  • Panda SS, Dhal NK (2016) A Novel green technology to clean up the highly contaminated chromites mining sites of Odisha. JMbaiaCP, Boca Raton, pp 21–31

    Google Scholar 

  • Percival SL, Bowler P, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60:1–7

    CAS  Google Scholar 

  • Phillips AJ, Gerlach R, Lauchnor E, Mitchell AC, Cunningham AB, Spangler L (2013) Engineered applications of ureolytic biomineralization: a review. Biofouling 29:715–733

    CAS  Google Scholar 

  • Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P (2013) Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem 48:317–324

    CAS  Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956

    CAS  Google Scholar 

  • Rani A, Goel R (2009) Strategies for crop improvement in contaminated soils using metal-tolerant bioinoculants. Microbial strategies for crop improvement. Springer, New York, pp 85–104

    Google Scholar 

  • Ranquet C, Ollagnier-de-Choudens S, Loiseau L, Barras F, Fontecave M (2007) Cobalt stress in Escherichia coli the effect on the iron-sulfur proteins. J Biol Chem 282:30442–30451

    CAS  Google Scholar 

  • Revis N, Osborne T, Holdsworth G, Hadden C (1990) Mercury in soil: a method for assessing acceptable limits. Arch Environ Contam Toxicol 19:221–226

    CAS  Google Scholar 

  • Rizwan M et al (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23:17859–17879

    CAS  Google Scholar 

  • Rusmini R, Sukarmin S, Muchlis M Bioremediation of cadmium and chromium metal polluted soil using compost. In: International conference on science and technology (ICST 2018), 2018. Atlantis Press, Paris

  • Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcasanu IC (2010) Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 85:763–771

    CAS  Google Scholar 

  • Sasikumar CS, Papinazath T (2003) Environmental management: Bioremediation of polluted environment. In: Proceedings of the third international conference on environment and health. Department of Geography, University of Madras, Chennai and Faculty of …, pp 465–469

  • Satyapal G, Rani S, Kumar M, Kumar N (2016) Potential role of arsenic resistant bacteria in bioremediation: current status and future prospects. J Microb Biochem Technol 8:256–258

    CAS  Google Scholar 

  • Satyapal GK, Mishra SK, Srivastava A, Ranjan RK, Prakash K, Haque R, Kumar NJBR (2018) Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India. Biotechnol Rep 17:117–125

    Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    CAS  Google Scholar 

  • Sharma S (2012) Bioremediation: features, strategies and applications. Asian J Pharm Life Sci 2:202–213 (ISSN 2231:4423)

    Google Scholar 

  • Sher S, Rehman A (2019) Use of heavy metals resistant bacteria—a strategy for arsenic bioremediation. Appl Microbiol Biotechnol 103:6007–6021

    CAS  Google Scholar 

  • Shukla A, Mehta K, Parmar J, Pandya J, Saraf M (2019a) Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell. Eur Polym J 119:298–310

    CAS  Google Scholar 

  • Shukla A, Parmar P, Goswami D, Patel B, Saraf M (2020) Characterization of novel thorium tolerant ochrobactrum intermedium AM7 in consort with assessing its EPS-thorium binding. J Hazard Mater 388:122047

    CAS  Google Scholar 

  • Shukla A, Parmar P, Saraf M (2017) Radiation, radionuclides and bacteria: an in-perspective review. J Environ Radioact 180:27–35

    CAS  Google Scholar 

  • Shukla A, Parmar P, Saraf M, Patel B (2019b) Isolation and screening of bacteria from radionuclide containing soil for bioremediation of contaminated sites. Environ Sustain 2:255–264

    CAS  Google Scholar 

  • Silver S, Phung LT (2009) Heavy metals, bacterial resistance Encyclopedia of Microbiology, pp 220–227

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    CAS  Google Scholar 

  • Sivakumar D, Kandaswamy A, Gomathi V, Rajeshwaran R, Murugan N (2014) Bioremediation studies on reduction of heavy metals toxicity. Pollut Res 33:553–558

    CAS  Google Scholar 

  • Smejkalova M, Mikanova O, Boruvka LJPS (2003) Effects of heavy metal concentrations on biological activity of soil micro-organisms. Environment 49:321–326

    CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke P, Garg S (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    CAS  Google Scholar 

  • Sterritt R, Lester JJW (1980) Concentrations of heavy metals in forty sewage sludges in England. Air Pollut S 14:125–131

    CAS  Google Scholar 

  • Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571

    CAS  Google Scholar 

  • Stoppel R-D, Meyer M, Schlegel HG (1995) The nickel resistance determinant cloned from the enterobacterium Klebsiella oxytoca: conjugational transfer, expression, regulation and DNA homologies to various nickel-resistant bacteria. Biometals 8:70–79

    CAS  Google Scholar 

  • Suzuki Y, Banfield JF (2004) Resistance to, and accumulation of, uranium by bacteria from a uranium-contaminated site. Geomicrobiol J 21:113–121

    CAS  Google Scholar 

  • Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4:252–267

    Google Scholar 

  • Tao H-C, Peng Z-W, Li P-S, Yu T-A, Su J (2013) Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR. Biotechnol Lett 35:1253–1258

    CAS  Google Scholar 

  • Tao H, Fatoki O (1997) Biomethylation in the natural environment: a review. J NIRE 6:366–370

    Google Scholar 

  • Teclu D, Tivchev G, Laing M, Wallis M (2008) Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria. Water Res 42:4885–4893

    CAS  Google Scholar 

  • Tewari N, Vasudevan P, Guha B (2005) Study on biosorption of Cr (VI) by Mucor hiemalis. Biochem Eng J 23:185–192

    CAS  Google Scholar 

  • Thakre NA, Shanware AS (2015) Promising biological indicator of heavy metal pollution: bioluminescent bacterial strains isolated and characterized from marine niches of Goa, India. Indian J Microbiol 55:327–332

    CAS  Google Scholar 

  • Tibazarwa C et al (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26

    CAS  Google Scholar 

  • Tripathi P, Srivastava S (2007) Mechanism to combat cobalt toxicity in cobalt resistant mutants of Aspergillus nidulans. Indian J Microbiol 47:336–344

    CAS  Google Scholar 

  • Tyagi R, Sreekrishnan T, Blais J, Campbell P (1994) Kinetics of heavy metal bioleaching from sewage sludge—III temperature effects. Water Res 28:2367–2375

    CAS  Google Scholar 

  • Vicentin RP, Santos JVd, Labory CRG, Costa AMd, Moreira FMdS, Alves E (2018) Tolerance to and accumulation of cadmium, copper, and zinc by Cupriavidus necator. Revista Brasileira de Ciência do Solo 42:1–12

    Google Scholar 

  • Villadangos AF, Ordóñez E, Pedre B, Messens J, Gil JA, Mateos LM (2014) Engineered coryneform bacteria as a bio-tool for arsenic remediation. Appl Microbiol Biotechnol 98:10143–10152

    CAS  Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216

    CAS  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41:4017–4029

    CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    CAS  Google Scholar 

  • Wani S, Barnes J, Singleton I (2016) Investigation of potential reasons for bacterial survival on ‘ready-to-eat’leafy produce during exposure to gaseous ozone. Postharvest Biol Technol 111:185–190

    CAS  Google Scholar 

  • Williams JW, Silver SJE (1984) Bacterial resistance and detoxification of heavy metals. Enzyme Microb Technol 6:530–537

    CAS  Google Scholar 

  • Willner J, Fornalczyk A (2013) Extraction of metals from electronic waste by bacterial leaching. Environ Prot Eng 39:197–208

    CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Not. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact 99:126–133

    CAS  Google Scholar 

  • Yahaghi Z, Shirvani M, Nourbakhsh F, De La Pena TC, Pueyo JJ, Talebi M (2018) Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: implications for microbe-assisted phytoremediation. J Microbiol Biotechnol 28:1156–1167

    CAS  Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2019) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563

    CAS  Google Scholar 

  • Zhang J, Zhang X, Ni Y, Yang X, Li H (2007) Bioleaching of arsenic from medicinal realgar by pure and mixed cultures. Process Biochem 42:1265–1271

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Saraf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, D., Sarma, S., Parmar, P. et al. Microbes as a boon for the bane of heavy metals. Environmental Sustainability 3, 233–255 (2020). https://doi.org/10.1007/s42398-020-00112-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-020-00112-2

Keywords

Navigation