Skip to main content
Log in

Copper and iron overload protect Escherichia coli from exogenous H2O2 by modulating membrane phospholipid composition

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Development of green technologies for sustainable development requires growth of bacteria in medium containing H2O2 from 50 to 150 mM that may contain millimolar level of copper (Cu) and iron (Fe). However, the mechanism of oxidative stress involving high concentration of exogenous H2O2 in bacteria and the effect of Cu and Fe overload on the same remain controversial. In the present study, we investigated the effect of millimolar concentration of Cu and Fe on H2O2-induced oxidative stress using the enterotoxigenic Escherichia coli 12566 as a model system. Our results indicate that at millimolar concentration, Fe and Cu protect E. coli from H2O2-induced oxidative stress by (1) suppressing H2O2-induced growth inhibition, (2) reducing H2O2-induced lipid peroxidation, (3) decreasing catalase activity and (4) modulating H2O2 -induced release of cytosolic Fe content in a dose-dependent manner. A previous study by our group shows that H2O2 significantly alters the phospholipid (PL) composition in E. coli by a dose-dependent increase in cardiolipin (CL) accompanied by decrease in sum total of phosphatidyl ethanolamine (PE) and phosphatidyl glycerol (PG). In the present study, we show that Cu2+ and Fe3+ at 1 mM reduce H2O2-induced change in PL composition of E. coli leading to stabilization of its membrane components. For the first time, our results show that overloading of E. coli with Cu2+ and Fe3+ activates a protective mechanism against H2O2-induced oxidative damage by modulating its membrane PL composition. Our study reveals a pivotal regulatory role of these metal ions in the sectors of sustainable technologies such as heavy metal bioremediation, sewage treatment and bioelectrochemical reactors that require microbial growth at high concentration of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

EPR:

Electron paramagnetic resonance

IDR:

Iron-detection reagent

IRR:

Iron releasing reagent

PMSF:

Phenyl methyl sulfonyl fluoride

PC:

Phosphatidyl choline

PE:

Phosphatidyl ethanolamine

PG:

Phosphatidyl glycerol

CL:

Cardiolipin

PL:

Phospholipid

PM:

Plasma membrane

ROS:

Reactive oxygen species

PUFA:

Polyunsaturated fatty acid

O ·−2 :

Superoxide ion

OH·− :

Hydroxyl ion

SOD:

Superoxide dismutase

References

  • Abskharon RNN, Hassan SHA, Gad El-Rab SMF, Shoreit AAM (2008) Heavy metal resistant of E. coli isolated from wastewater sites in Assiut City, Egypt. Bull Environ Contam Toxicol 81:309–315

    CAS  Google Scholar 

  • Ames GF (1968) Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol 95:833–843

    CAS  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, anti-oxidants and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    CAS  Google Scholar 

  • Andra JR, Goldmann T, Ernst CM, Peschel A, Gutsmann T (2011) Multiple peptide resistance factor (MprF)-mediated resistance of Staphylococcus aureus against antimicrobial peptides coincides with a modulated peptide interaction with artificial membranes comprising lysyl-phosphatidylglycerol. J Biol Chem 286:18692–18700

    Google Scholar 

  • Andrews SC, Robinson AK, Rodriguez-Quinones H (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    CAS  Google Scholar 

  • Arguello JM, Raimunda D, Padilla-Benavides T (2013) Mechanisms of Cu homeostasis in bacteria. Front Cell Infect Microbiol 3:73

    Google Scholar 

  • Bajpai P (2015) Pulp and paper industry, Chap. 3. Elsevier, Amsterdam

    Google Scholar 

  • Baker J, Sitthisak S, Sengupta S, Johnson M, Jayaswal RK et al (2010) Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation. Appl Environ Microbiol 76:150–160

    CAS  Google Scholar 

  • Baud O, Greene AE, Li J, Wang H, Volpe JJ et al (2004) Glutathione peroxidase–catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 24:1531–1540

    CAS  Google Scholar 

  • Beers RF, Sizer IWA (1952) Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 795:133–140

    Google Scholar 

  • Bereswill S, Waidner U, Odenbreit S, Lichte F, Assbinder F, Bode G, Kist M (1998) Structural, functional and mutational analysis of the pfr gene encoding a ferritin from Helicobacter pylori. Microbiology 144:2505–2516

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  • Castegna A, Lauderback CM, Hafiz MA, Butterfield DA (2004) Modulation of phospholipid asymmetry in synaptosomal membranes by the lipid peroxidation products, 4-hydroxynonenal and acrolein: implications for Alzheimer’s disease. Brain Res 1004:193–197

    CAS  Google Scholar 

  • Catucci L, Depalo N, Lattanzio VMT, Agostiano A, Corcelli A (2004) Neosynthesis of cardiolipin in Rhodobacter sphaeroides under osmotic stress. Biochemistry 43:15066–15072

    CAS  Google Scholar 

  • Chevionab M (1998) A site-specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals. Free Radic Biol Med 5:27–37

    Google Scholar 

  • Ciriminna R, Albanese L, Meneguzzo F, Pagliaro M (2016) Hydrogen peroxide: a key chemical for today’s sustainable development. Chem Sus Chem 9:1–9

    Google Scholar 

  • Cuypers A, Hendrix S, Reis RA, Smet SD, Deckers J et al (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci 7:1–25

    Google Scholar 

  • de Kruijff B (1997) Lipid polymorphism and biomembrane function. Curr Opin Chem Biol 1:64–69

    Google Scholar 

  • de Siervo AJ (1969) Alterations in the phospholipid composition of Escherichia coli B during growth at different temperatures. J Bacterial 100:1342–1349

    Google Scholar 

  • Djaman O, Outten FW, Imlay JA (2004) Repair of oxidized iron-sulfur clusters in Escherichia coli. J Biol Chem 279:44590–44599

    CAS  Google Scholar 

  • DSouza UJA (2017) Pesticide toxicity and oxidative stress: a review. BJMS 11:9–19

    Google Scholar 

  • Ekwuluo MO, Udom GJ, Osu CI, Ebiana CA (2018) Advances on chemical oxidants for remediation of ground water contaminated with petroleum hydrocarbon products. IOSR-JESTFT 12:76–81

    CAS  Google Scholar 

  • Ezraty B, Gennaris A, Barras F, Collet JF (2017) Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol 15:385–396

    CAS  Google Scholar 

  • Farr SB, Kogoma T (1988) Effects of oxygen stress on membrane functions in Escherichia coli: role of HPI Catalase. J Bacteriol 170:1837–1842

    CAS  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910

    CAS  Google Scholar 

  • Fiske C, Subarrow Y (1925) The colorimetric determination of phosphorous. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Fukuzawa K, Fujisaki A, Akai K, Tokumura A, Terao J et al (2006) Measurement of phosphatidylcholine hydroperoxides in solution and in intact membranes by the ferric–xylenol orange assay. Anal Biochem 359:18–25

    CAS  Google Scholar 

  • Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529–1542

    CAS  Google Scholar 

  • Haber F, Weiss JJ (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond Ser A 147:332–351

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    CAS  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement and significance. Am J Clin Nutr 57:715–725

    Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    CAS  Google Scholar 

  • Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 113:71–133

    Google Scholar 

  • Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Env Microbiol 63:2971–2976

    CAS  Google Scholar 

  • Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454

    CAS  Google Scholar 

  • Ishikawa T, Mizunoe Y, Kawabata S, Takade A, Harada M et al (2003) The iron-binding protein Dps confers hydrogen peroxide stress resistance to Campylobacter jejuni. J Bacteriol 185:110–117

    Google Scholar 

  • Jeong CB, Kang HM, Lee MC, Kim DH, Han J et al (2016) Adverse effects of microplastics andoxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Sci Rep 7:41323

    Google Scholar 

  • Kanemasa Y, Yioshioka T, Hayashi H (1972) Alteration of the phospholipid composition of Staphylococcus aureus cultures in medium containing NaCl. Biochim Biophys Acta 280:444–450

    CAS  Google Scholar 

  • Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY (2012) Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J Antimicrob Chemother 7:1589–1596

    Google Scholar 

  • Liochev SL (1996) The role of iron-sulfur clusters in in vivo hydroxyl radical production. Free Radic Res 25:369–384

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Macomber L, Rensing C, Imlay JA (2007) Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189:1616–1626

    CAS  Google Scholar 

  • Martin JV, Sugawa C (2017) Hydrogen peroxide ingestion with injury to upper gastrointestinal tract. World J Clin Cases. 5:378–380

    Google Scholar 

  • McDonnell G, Patai S (2014) Chemistry of functional groups. Wiley, Hoboken, pp 1–34

    Google Scholar 

  • Meneghini R (1988) Genotoxicity of active oxygen species in mammalian cells. Mutat Res 195:215–230

    CAS  Google Scholar 

  • Mileykovskaya E (2007) Subcellular localization of Escherichia coli osmosensory transporter ProP: focus on cardiolipin membrane domains. Mol Microbiol 64:1419–1422

    CAS  Google Scholar 

  • Mirhadi H, Abbaszadegan A, Ranjbar MA, Azar MR, Geramizadeh B et al (2015) Antibacterial and toxic effect of hydrogen peroxide combined with different concentrations of chlorhexidine in comparison with sodium hypochlorite. Dent Shiraz Univ Med Sci 16:349–355

    Google Scholar 

  • Modin O, Fukushi K (2013) Production of high concentrations of H2O2 in a bioelectrochemical reactor fed with real municipal wastewater. Environ Technol 34:2737–2742

    CAS  Google Scholar 

  • Momchilova A, Petkova D, Staneva G, Markovska T, Pankov S (2014) Resveratrol alters the lipid composition, metabolism and peroxide level in senescent rat hepatocytes. Chem Biol Interact 207:74–80

    CAS  Google Scholar 

  • Pamplona R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: A causal role in aging and longevity. Biochem Biophys Acta 1777:1249–1262

    CAS  Google Scholar 

  • Parker F, Peterson NF (1965) Quantitative analysis of phospholipids and phospholipid fatty acids from silica gel thin-layer chromatograms. J Lipid Res 6:455–460

    CAS  Google Scholar 

  • Patil VA, Fox JL, Gohil VM, Winge Greenberg ML (2013) Metabolism: loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis. J Biol Chem 288:1696–1705

    CAS  Google Scholar 

  • Reimer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R (2004) Colorimetric ferrozine based assay for the quantitation of iron in cultured cells. Anal Biochem 331:370–375

    Google Scholar 

  • Repine J, Fox RB, Berger EM (1981) Hydrogen peroxide kills Staphylococcus aureus by reacting with Staphylococcal iron to form hydroxyl radical. J Biol Chem 256:7094–7096

    CAS  Google Scholar 

  • Rolett VW, Mallampalli VKPSM, Karistaedt A, Dowhan W, Taegtmeyer H, Margolin W, Vetrac H (2017) Impact of membrane phospholipid alteration in Escherichia coli on cellular function and bacterial stress adaptation. J Bacteriol 19:1–22

    Google Scholar 

  • Rosas SB, Secco M, Ghittoni NE (1980) Effects of pesticides on the fatty acid and phospholipid composition of Escherichia coli. Appl Environ Microbiol 40:231–234

    CAS  Google Scholar 

  • Rouser G, Fkeischer S, Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496

    CAS  Google Scholar 

  • Sahu SK, Behuria HG (2018) Biochemical characterization of H2O2-Induced oxidative stress in E. coli. J Appl Microbiol Biochem 2:1–8

    Google Scholar 

  • Sahu SK, Behuria HG, Gupta S, Dalua RB, Sahoo S et al (2016a) Biochemical characterization of high mercury Tolerance in a Pseudomonas spp. isolated from industrial effluent. AJC Microb 4:41–54

    Google Scholar 

  • Sahu SK, Dalua RB, Sahoo S, Parida D, Ghosh S et al (2016b) Cobalt-induced cytotoxicity in E. coli (DH5α) is mediated by modulation of cellular phospholipid composition. J Adv Microbiol 5:215–223

    Google Scholar 

  • Schniederberend M, Zimmann P, Bogdanov M, Dowhan W, Altendorf K (2010) Influence of K+-dependent membrane lipid composition on the expression of the kdp FABC operon in Escherichia coli. Biochim Biophys Acta 1798:32–39

    CAS  Google Scholar 

  • Tree JJ, Ulett GC, Ong CY, Trott DJ, McEwan AG et al (2008) Trade-off between iron uptake and protection against oxidative stress: deletion of cueO promotes uropathogenic Escherichia coli virulence in a mouse model of urinary tract infection. J Bacteriol 190:6909–6912

    CAS  Google Scholar 

  • Tsou C, Chiang NC, Lin Y, Chuang W, Lin M et al (2008) An iron-binding protein, Dpr, decreases hydrogen peroxide stress and protects Streptococcus pyogenes against multiple stresses. Infect Immun 76:4038–4045

    CAS  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    CAS  Google Scholar 

  • Vita N, Landolfi G, Basle A, Platsaki S, Lee J et al (2016) Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity, bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity. Sci Rep 6:39065. https://doi.org/10.1038/srep39065

    Article  CAS  Google Scholar 

  • Wang F, Yao J, Wang Y, Tian L, Chen H, Djak A (2007) Microcalorimetric investigation of the toxic effect of iron species on Escherichia coli. Toxicol Mech Meth 17:325–330

    CAS  Google Scholar 

  • Watt BE, Proudfoot AT, Vale JA (2004) Hydrogen peroxide poisoning. Toxicol Rev 23:51–57

    CAS  Google Scholar 

  • Zamora R, Francisco J (2003) Phosphatidylethanolamine modification by oxidative stress product 4,5(E)-Epoxy-2(E)-heptenal. Chem Res Toxicol 16:1632–1641

    CAS  Google Scholar 

Download references

Acknowledgements

SKS is grateful to the Department of Science and Technology (DST), Govt of Odisha for funding the present work. HG acknowledges DST, Govt of India for providing INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Sahu.

Ethics declarations

Conflict of interest

The authors declare no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behuria, H.G., Gupta, S. & Sahu, S.K. Copper and iron overload protect Escherichia coli from exogenous H2O2 by modulating membrane phospholipid composition. Environmental Sustainability 2, 23–32 (2019). https://doi.org/10.1007/s42398-019-00046-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-019-00046-4

Keywords

Navigation