Skip to main content
Log in

Biocontrol potentials of novel indigenous Trichoderma isolates against Fusarium wilt of chickpea

  • Research Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

Forty Trichoderma isolates were collected from North-eastern dry zone of Karnataka to assess abiotic and biotic stress tolerance and chickpea Fusarium wilt management abilities. Among the isolates collected, Trichoderma asperellum and Hypocrea lixii species were predominantly distributed in the study area. In-vitro experiments showed that isolate T-46, T-43, T-17, T-13, T-36 and T-45 are effective in antagonistic and volatile compounds (VCs) production against chickpea pathogens. The NaCl salt range from 400 to 600 mM and temperature from 20 to 35 °C was optimum for normal growth and sporulation of Trichoderma isolates. The salt concentration above 600 mM NaCl and temperature < 15 and > 37 °C was found detrimental to Trichoderma mycelial growth, conidia and chlamydospores productions. Based on the abiotic and biotic stress tolerance five isolates (T-10, T-17, T-25, T-46, T-50) were selected for field experiment to manage chickpea Fusarium wilt. Treatment with T-17 and T-46 showed highest wilt inhibition over control in Annigeri cultivar in the sick soil condition. Under glasshouse conditions isolate T-46 exhibited delayed onset of Fusarium wilt incidence in JG 62 cultivar. The lowest AUDPC and relative AUDPC was observed in T-46 (70.50 ± 1.00 and 2.43 ± 0.03) and carbendazim (73.44 ± 4.12 and 2.53 ± 0.14) treated treatments. This finding provides insights on indigenous Trichoderma isolates tolerant to abiotic and biotic stress and can be used to alleviate chickpea Fusarium wilt in farmer fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akrami M, Khiavi KK, Shikhlinski H, Khoshvaghtei H (2013) Bio-controlling two pathogens of chickpea Fusarium solani and Fusarium oxysporum by different combinations of Trichoderma harzianum Trichoderma asperellum and Trichoderma virens under field condition. Int J Microbiol Res 1(2):52–55

    Google Scholar 

  • Anees M, Tronsmob A, Edel-Hermannc V, Hjeljordb LG, Raudc C, Steinberg C (2010) Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol 114:691–701

    Article  PubMed  Google Scholar 

  • Blaszczyk L, Popiel D, Chelkowski J, Koczyk G, Samuels GJ, Sobieralski K, Siwulski M (2011) Species diversity of Trichoderma in Poland. J Appl Genet 52:233–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Bokhari NA, Perveen K (2012) Antagonistic action of Trichoderma harzianum and Trichoderma viride against Fusarium solani causing root rot of tomato. Afr J Microbiol Res 6(44):7193–7197

    Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New York, p 532

    Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J (2005) 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability respiration intracellular pH and changes the protein composition. FEMS Microbiol Ecol 54:67–75

    Article  CAS  PubMed  Google Scholar 

  • Consolo VF, Monaco CI, Cordo CA, Salerno GL (2012) Characterization of novel Trichoderma spp. isolates as a search for effective biocontrollers of fungal diseases of economically important crops in Argentina. World J Microbiol Biotechnol 28:1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Alabouvette C (2009) Effects of the introduction of a biocontrol strain of Trichoderma atroviride 35 on non-target soil micro-organisms. Eur J Soil Biol 45:267–274

    Article  Google Scholar 

  • Denis M, Sutton DA, Cano-Lira JF, Gene J (2014) Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities. J Clin Microbiol 52:2112–2125

    Article  Google Scholar 

  • Dennis C, Webster J (1971) Antagonistic properties of species groups of Trichoderma I. Production of non-volatile antibiotics. Trans Br Mycol Soc 57:25–39

    Article  CAS  Google Scholar 

  • Dubey SC, Patel B (2001) Evaluation of fungal antagonists against Thanatephorus cucumeris causing web blight of mung bean. Indian Phytopathol 54:206–209

    Google Scholar 

  • Dubey SC, Suresh M, Singh B (2007) Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceri for integrated management of chickpea wilt. Biol Control 40:118–127

    Article  Google Scholar 

  • Edington LV, Khew KL, Barron GI (1971) Fungitoxic spectrum of benzimidazole compounds. Phytopathology 61:42–44

    Article  Google Scholar 

  • Elad Y, Chet I (1983) Improved selective media for isolation of Trichoderma spp. or Fusarium spp. Phytoparasitica 11:55–58

    Article  Google Scholar 

  • El-Komy MH, Saleh AA, Eranthodi A, Molan YY (2015) Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathol J 31(1):50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Meleigy MA, Hoseiny EN, Ahmed SA, Al-Hoseiny A (2010) Isolation identification morphogenesis and ultra-structure of obligate halophilic fungi. J Appl Sci Environ Sanit 5(2):201–212

    Google Scholar 

  • Fillinger S, Chaveroce MK, Van-Dijck P, De-Vries R, Ruijter G, Thevelein J, D’Enfert C (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147:1851–1862

    Article  CAS  PubMed  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, Singapore, pp 139–153

    Google Scholar 

  • Hirte WF (1969) The use of dilution plate method for the determination of soil microflora. The qualitative demonstration of bacteria and actinomycetes. Entrall Bakteriol Parasitenkd Infektionskr Hyg 123(2):167–178

    CAS  Google Scholar 

  • Kakvan N, Heydari A, Zamanizadeh RH, Rezaee S, Naraghi L (2013) Development of new bio-formulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop Protect 53:80–84

    Article  Google Scholar 

  • Khan MR, Ashraf S, Rasool F, Salati KM, Mohiddin FA, Haque Z (2014) Field performance of Trichoderma species against wilt disease complex of chickpea caused by Fusarium oxysporum f. sp. ciceri and Rhizoctonia solani. Turk J Agric for 38(4):447–454

    Article  Google Scholar 

  • Kim JS, Skinner M, Hata T, Parker BL (2010) Effects of culture media on hydrophobicity and thermotolerance of Bb and Ma conidia with description of a novel surfactant based hydrophobicity assay. J Invertebr Pathol 105(3):322–328

    Article  PubMed  Google Scholar 

  • Kredics L, Antal Z, Manczinger L (2000) Influence of water potential on growth enzyme secretion and in vitro enzyme activities of Trichoderma harzianum at different temperatures. Curr Microbiol 40:310–314

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Baker S, Gamauf C, Kenerley CM, Druzhinina IS (2008) Purifying selection and birth and death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. BMC Evol Biol 8:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez LL, Reyes RG, Alvindia DG (2015) Evaluation of two species of Trichoderma as a compost activator and biocontrol agents. J Agric Technol 11(2):525–537

    Google Scholar 

  • Meki S, Ahmed S, Sakhuja PK (2000) Pathogenic variability in Ethiopian isolates of Fusarium oxysporum f. sp. ciceris and reaction of chickpea improved varieties to isolates. Int J Pest Manag 54(2):143–149

    Google Scholar 

  • Meki S, Ahmed S, Sakhuja PK (2011) Control of chickpea wilt (Fusarium oxysporum f. sp. ciceris) using Trichoderma spp. in Ethiopia. Arch Phytopathol Plant Prot 44(5):432–440

    Article  Google Scholar 

  • Merkuz A, Getachew A (2012) Management of chickpea wilt Fusarium oxysporum f. sp. ciceri using Trichoderma sp. Int J Curr Res 4(05):128–134

    Google Scholar 

  • Mukherjee PK, Horwitz BA, Alfredo HE, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  • Nair D, Amaresh YS, Naik MK, Ashawathnarayana DS, Shakuntakala NM (2016) Screening of Trichoderma species against soil-borne pathogens. J Biol Control 29:145–147

    Google Scholar 

  • Nathawat BDS, Sharma OP, Kanwar H (2017) Assessment of yield losses caused by Fusarium oxysporum f. sp. ciceri (Padwick) in chickpea. Environ Ecol 35(4A):2930–2932

    Google Scholar 

  • Navas-Cortes JA, Hau B, Jimenez-Diaz RM (2000) Yield loss in chickpea in relation to development of Fusarium wilt epidemics. Phytopathology 90:1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Pande S, Sharma M, Avuthu N and Telangre R (2012) High throughput phenotyping of chickpea diseases. ICRISAT Information Bulletin No. 92

  • Poddar RK, Singh DV, Dubey SC (2004) Management of chickpea wilt through a combination of fungicides and bioagents. Indian Phytopathol 57(1):39–43

    CAS  Google Scholar 

  • Poosapati S, Ravulapalli DP, Tippirishetty N, Vishwanathaswamy D, Chunduri S (2014) Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. SpringerPlus 3(64):11–11

    Google Scholar 

  • Ramanagouda G, Naik MK (2021) Compatibility studies of indigenous Trichoderma isolates with pesticides. Indian Phytopathol 74:241–248

    Article  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2013) Salinity tolerant T. harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f. sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions. Phytopathol Plant Prot 46(12):1442–1467

    Article  CAS  Google Scholar 

  • Rekha D, Patil MB, Naik MK, Ravi MV, Bhemanna M, Amaresh YS (2011) Evaluation of native isolates of Trichoderma sp. against Fusarium oxysporum f. sp. ciceri causing wilt in chickpea. J Plant Dis Sci 6(2):163–166

    Google Scholar 

  • Rossman AY (2009) The impact of invasive fungi on agricultural ecosystems in the United States. Biol Invasions 11:97–107

    Article  Google Scholar 

  • Ruijter GJ, Bax M, Patel H, Flitter SJ, Ondervoort PJI, De Vries RP, Van Kuyk PA, Visser J (2003) Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryot Cell 4:690–698

    Article  Google Scholar 

  • Samuels GJ, Chaverri P, Farr DF, McCray EB (2009) Trichoderma online Systematic Mycology and Microbiology Laboratory. http://nt.ars-grin.gov/taxadescriptions/keys/TrichodermaIndex.cfm

  • Sharma KD, Muehlbauer FJ (2007) Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157:1–14

    Article  CAS  Google Scholar 

  • Sharma M, Pande S (2013) Unravelling effect of temperature and soil moisture stress response on development of dry root rot [Rhizatonia bataticola (Taub.)] Butler in chickpea. Am J Plant Sci 4:584–589

    Article  Google Scholar 

  • Sharvelle EG (1961) The nature and use of modern fungicides. Burges, Publication Company Minnesota, Minneapolis, p 308

    Google Scholar 

  • Shim JO, Son SG, Kim YH, Lee YS, Lee JY, Lee TS, Lee SS, Lee MW (1997) The cultural conditions affecting the mycelial growth of Grifola umbellata. Korean J Mycol 25(3):209–218

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:1–23

    Article  Google Scholar 

  • Siddiquee S, Cheong BE, Taslim K, Kausar H, Hasan MM (2012) Separation and identification of volatile compounds from liquid cultures of Trichoderma harzianum by GC–MS using three different capillary columns. J Chromatogr Sci 50:358–367

    Article  CAS  PubMed  Google Scholar 

  • Sreedevi B, Charitha DM, Saigopal DVR (2011) Induction of defense enzymes in Trichoderma harzianum treated groundnut plants against Macrophomina phaseolina. J Biol Control 25(1):67–73

    Google Scholar 

  • Tamini KM, Hutchinson SA (1975) Differences between the biological effects of culture gases from several species of Trichoderma. Trans Br Mycol Soc 64:455–463

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent JM (1927) Distribution of fungal hyphae in the presence of certain inhibitors. Nature 159:239–241

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanagouda, G., Naik, M.K. & Sharma, M. Biocontrol potentials of novel indigenous Trichoderma isolates against Fusarium wilt of chickpea. Indian Phytopathology 75, 135–146 (2022). https://doi.org/10.1007/s42360-021-00442-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-021-00442-z

Keywords

Navigation