Skip to main content
Log in

The Degradation Analysis of XLPE Materials Under Thermal Aging: A Comprehensive Study Through Partial Discharge Measurements and Structural Characterization Techniques

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

This article focuses on the impact of thermal aging on the insulation material used in cross-linked polyethylene (XLPE) cables. During the experimental process, the samples are subjected to thermal aging at 120 °C for 450 h in total. The impact of thermal stress on insulation quality is analyzed through partial discharge (PD) parameters. Accordingly, the average PD charge of peroxide and silane-added samples increased by 72% and 37%, respectively. Also, their partial discharge inception voltages decreased by 9% and 12.5%, respectively. For investigation of the root causes of the increase in partial discharge activity, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and ultraviolet–visible (UV–Vis) spectrophotometers are used. The structural changes caused by thermal aging were characterized through FTIR spectroscopy as the formation of new chemical bonds, chain degradation and increased absorption of hydroxyl and carbonyl groups. Additionally, XRD analysis showed alterations in crystallization degree, while UV–Vis spectral analysis demonstrated higher absorbances and a decrease in band gap energies for peroxide and silane-added XLPE samples, respectively, to 3.8 eV and 3.36 eV after thermal aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.C. Montanari, R. Ghosh, An innovative approach to partial discharge measurement and analysis in DC insulation systems during voltage transient and in steady state. High Volt. 6(4), 565–575 (2021). https://doi.org/10.1049/hve2.12131

    Article  Google Scholar 

  2. M. Camalov, A. Orucov, A. Hashimov, O. Arikan, F. Akin, Breakdown strength analysis of XLPE insulation types: a comparative study for multi-layer structure and voltage rise rate. Electr. Power Syst. Res. 223, 109703 (2023). https://doi.org/10.1016/j.epsr.2023.109703

    Article  Google Scholar 

  3. IRENA (2019), Renewables readiness assessment: Azerbaijan, International Renewable Energy Agency, Abu Dhabi

  4. A. El-Zein, Kh. Mohamed, M. Talaat, Water trees in polyethylene insulated power cables: approach to water trees initiation mechanism. Electr. Power Syst. Res. 180, 106158 (2020). https://doi.org/10.1016/j.epsr.2019.106158

    Article  Google Scholar 

  5. J. Su, B. Du, J. Li, Z. Li, Electrical tree degradation in high-voltage cable insulation: progress and challenges. High Volt. 5, 353–364 (2020). https://doi.org/10.1049/hve.2020.0009

    Article  Google Scholar 

  6. S. Gutierrez, I. Sancho, L. Fontan, J. No, Effect of protrusions in HVDC cables. IEEE Trans. Dielectr. Electr. Insul. 19(5), 1774–1781 (2012)

    Article  Google Scholar 

  7. P. L. Daniel, P. Rain, O. Gallot-Lavallée, S. Haller, X. Festaz, Discharging microcavities and electric field enhancement inside cavities in HVDC XLPE Cables, In 2020 IEEE 3rd International Conference on Dielectrics (ICD), Valencia, Spain, 2020, 882–885, doi: https://doi.org/10.1109/ICD46958.2020.9341909

  8. O. Arikan, C.C. Uydur, C.F. Kumru, Insulation evaluation of MV underground cable with partial discharge and dielectric dissipation factor measurements. Electr. Power Syst. Res. 220, 109338 (2023). https://doi.org/10.1016/j.epsr.2023.109338

    Article  Google Scholar 

  9. Emna Khouildi, Rabah Attia, Rafik Cherni,“Investigating Thermal Effect on a Cross Linked Polyethylene Power Cable, IJEECS, 5,1, 33–40, (2017). https://doi.org/10.11591/ijeecs.v5.i1

  10. Z. Lei et al., Influence of temperature on dielectric properties of EPR and partial discharge behavior of spherical cavity in EPR insulation. IEEE Trans. Dielectr. Electr. Insul. 22(6), 3488–3497 (2015). https://doi.org/10.1109/TDEI.2015.004942

    Article  CAS  Google Scholar 

  11. M. Knenicky, R. Prochazka, J. Hlavacek, Partial discharge patterns during accelerated aging of medium voltage cable system, In 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 2018, 1–4

  12. N. Adhikari (2021) Insulation condition monitoring in high voltage power cables using partial discharge measurements, In 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 2021, 1–5

  13. S. Akram, M. Peng Wang, T. Nazir, M. Kai Zhou, S. Bhutta, H. Hussain, Impact of impulse voltage frequency on the partial discharge characteristic of electric vehicles motor insulation. Eng. Fail. Anal. 116, 104767 (2020)

    Article  Google Scholar 

  14. L. Wang, A. Cavallini, G. C. Montanari, L. Testa, T. Spa, Patterns of partial discharge activity in XLPE: from inception to breakdown, In 2010 10th IEEE International Conference on Solid Dielectrics, Potsdam, Germany, 2010, 1–4, doi: https://doi.org/10.1109/ICSD.2010.5568121

  15. Y. Zhang, Y. Zhou, L. Zhang, C. Teng, D. Hu, R. Liu, Electrical tree growth and its partial discharge pattern in silicone rubber under AC voltages, In 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 2020, 1–4, doi: https://doi.org/10.1109/ICHVE49031.2020.9279980

  16. F. Mauseth, H. L. Halvorson, S. Hvidsten, "Diagnostic testing of thermally aged medium voltage XLPE cable joints, In 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, Canada, 2012, 823–826, doi: https://doi.org/10.1109/CEIDP.2012.6378907

  17. Y. Chen et al., Voltage equivalence of partial discharge tests for XLPE insulation defects. IEEE Trans. Dielectr. Electr. Insul. 29(2), 683–692 (2022). https://doi.org/10.1109/TDEI.2022.3157919

    Article  CAS  Google Scholar 

  18. R. Sahoo, S. Karmakar, "Electrical Tree Growth Structural Analysis of XLPE Cable Insulation under Different AC Voltage," In 2021 IEEE 5th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Kozhikode, India, 2021, 005–010

  19. S. Wu, S. Zheng, Z. Zhang, A. Zhong, R. Cao, C. Wang (2021) The relationship between electrical tree growth and partial discharge characteristics in XLPE," In 2021 IEEE Electrical Insulation Conference (EIC), Denver, CO, USA, 2021, 461-464

  20. S. Rowland, I. Iddrissu, H. Zheng, Z. Lv, R. Schurch Brandt, Electrical tree growth and partial discharge in epoxy resin under combined AC and DC voltage waveforms. IEEE Trans. Dielectr. Electr. Insul. 25(6), 2183–2190 (2018). https://doi.org/10.1109/TDEI.2018.007310

    Article  Google Scholar 

  21. S. Alapati, M.J. Thomas, Electrical treeing and the associated PD characteristics in LDPE nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 19(2), 697–704 (2012). https://doi.org/10.1109/TDEI.2012.6180265

    Article  CAS  Google Scholar 

  22. P.A. Sharad, K. Sathish Kumar, Application of surfacemodified XLPE nanocomposites for electrical insulation- partial discharge and morphological study. Nanocomposites 3(1), 30–41 (2017). https://doi.org/10.1080/20550324.2017.1325987

    Article  CAS  Google Scholar 

  23. S. Z. Dabbak, H. A. Illias, “Effect of Surface Discharges on Different Polymer Dielectric Materials under High Field Stress.” IEEE Transactions on Dielectrics and Electrical Insulation Vol. 24, No. 6; December 2017.

  24. F.-B. Meng, X. Chen, X. Xing, C. Dai, A. Paramane, Y. Tanaka, Effect of degassing treatment durations on physico-chemical and electrical properties of 500 kV extra HVDC XLPE cable insulation. Polym. Degrad. Stab. 188, 109566 (2021). https://doi.org/10.1016/j.polymdegradstab.2021.109566

    Article  CAS  Google Scholar 

  25. L. Boukezzi, A. Boubakeur, Effect of thermal aging on the electrical characteristics of XLPE for HV cables. Trans. Electr. Electron. Mater. 19, 344–351 (2018). https://doi.org/10.1007/s42341-018-0043-7

    Article  Google Scholar 

  26. Y. Zhang, Z. Wu, C. Qian, X. Tan, J. Yang, L. Zhong, Research on lifespan prediction of cross-linked polyethylene material for XLPE cables. Appl. Sci. 10, 5381 (2020)

    Article  CAS  Google Scholar 

  27. X. Dai, J. Hao, R. Liao, X. Zheng, Z. Gao, W. Peng, Multi-dimensional analysis and correlation mechanism of thermal degradation characteristics of XLPE insulation for extra high voltage submarine cable. IEEE Trans. Dielectr. Electr. Insul. 28, 1488–1496 (2021)

    Article  CAS  Google Scholar 

  28. S. Mattei, L. Cozzarini, C. Bedon, Experimental and numerical peeling investigation on aged multi-layer anti-shatter safety films (ASFs) for structural glass retrofit. Symmetry 14, 162 (2022). https://doi.org/10.3390/sym14010162

    Article  CAS  Google Scholar 

  29. F. Akin, O. Arikan, The effect of thermal aging on solid insulating materials: a case study for dielectric loss and dissipation factor based evaluations under different voltage levels and frequencies. Eng. Fail. Anal. 148, 107222 (2023). https://doi.org/10.1016/j.engfailanal.2023.107222

    Article  CAS  Google Scholar 

  30. D. He, T. Zhang, M. Ma, W. Gong, W. Wang, Q. Li, Research on mechanical, physicochemical and electrical properties of XLPE-insulated cables under electrical-thermal aging. J. Nanomater. 2020, 3968737 (2020). https://doi.org/10.1155/2020/3968737

    Article  CAS  Google Scholar 

  31. L. Xu, Y. He, S. Ma, L. Hui, Effects of hygrothermal and thermal-oxidative ageing on the open-hole properties of T800/high-temperature epoxy resin composites with different hole shapes. High Perform. Polym. 32(3), 306–315 (2020). https://doi.org/10.1177/0954008319860892

    Article  CAS  Google Scholar 

  32. Y. Kemari, A. Mekhaldi, G. Teyssèdre, M. Teguar, Correlations between structural changes and dielectric behavior of thermally aged XLPE. IEEE Trans. Dielectr. Electr. Insul. 26(6), 1859–1866 (2019)

    Article  CAS  Google Scholar 

  33. X. Huang, J. Martinez-Vega, D. Malec, “Dielectric breakdown and morphological evolution of PTFE during thermal-oxidative ageing at temperatures lower and higher than the melting temperature.” In 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena

  34. A.H.M. Shirazi, S.M.H. Hosseini, Comparison of aged XLPE power cables restoration by injecting two various anti-failure nanofluids. Eng. Fail. Anal. 90, 262–276 (2018). https://doi.org/10.1016/j.engfailanal.2018.03.034

    Article  CAS  Google Scholar 

  35. H. Wang, M. Sun, K. Zhao, X. Wang, Q. Xu, W. Wang, C. Li, High-voltage FDS of thermally aged XLPE cable and its correlation with physicochemical properties. Polymers 14, 3519 (2022). https://doi.org/10.3390/polym14173519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D.S. Muhammed, M.A. Brza, M.M. Nofal, S.B. Aziz, S.A. Hussen, R.T. Abdulwahid, Optical dielectric loss as a novel approach to specify the types of electron transition: XRD and UV–Vis as a non-destructive techniques for structural and optical characterization of PEO based nanocomposites. Materials 13, 2979 (2020). https://doi.org/10.3390/ma13132979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Z. Liu, Y. Miyazaki, N. Hirai, Y. Ohki, Comparison of the effects of heat and gamma irradiation on the degradation of cross-linked polyethylene. IEE J. Trans. Electr. Electr. Eng. 15, 24–29 (2020)

    Article  Google Scholar 

  38. R. Sahoo, S. Karmakar, Impact of accelerated thermal aging on electrical tree structure and physicochemical characteristics of XLPE insulation. IEEE Trans. Dielectr. Electr. Insul. 31(1), 429–438 (2024). https://doi.org/10.1109/TDEI.2023.3310946

    Article  Google Scholar 

  39. Y. Chen, B. Hui, Y. Cheng, Y. Hao, F. Mingli, L. Yang, S. Hou, L. Li, Failure investigation of buffer layers in high-voltage XLPE cables. Eng. Fail. Anal. 113, 104546 (2020). https://doi.org/10.1016/j.engfailanal.2020.104546

    Article  CAS  Google Scholar 

  40. Dielectric and resistive properties of solid insulating materials—Part 2-1: relative permittivity and dissipation factor—Technical Frequencies (0,1 Hz–10 MHz)—AC Methods. IEC 62631-2-1:2018

  41. Dielectric and resistive properties of solid insulating materials - Part 3-1: determination of resistive properties (DC methods)—Volume resistance and volume resistivity—General method. IEC 62631-3-1, (2016)

  42. Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation. ASTM D150-18. (2018)

  43. Standard Test Methods for DC Resistance or Conductance of Insulating Materials. ASTM D257-14 (2021)

  44. International Organization for Standardization, ISO 14644–1, cleanrooms and associated controlled environments—Part 1: classification of air cleanliness by particle concentration (International Organization for Standardization, Geneva, 2015)

    Google Scholar 

  45. International Organization for Standardization, ISO 14644–2, cleanrooms and associated controlled environments—Part 2: cleanrooms and associated controlled environments monitoring to provide evidence of cleanroom performance related to air cleanliness by particle concentration (International Organization for Standardization, Geneva, 2015)

    Google Scholar 

  46. Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1,2 kV) up to 30 kV (Um = 36 kV)—Part 1, IEC Standard (2021), 60502–1

  47. “High-voltage test techniques. Partial discharge measurements,” IEC standard 60270:2001+A1:2016, 2016

  48. M. Farahani, E. Gockenbach, H. Borsi, K. Schäfer, M. Kaufhold, Behavior of machine insulation systems subjected to accelerated thermal aging test. IEEE Trans. Dielectr. Electr. Insul. 17(5), 1364–1372 (2010). https://doi.org/10.1109/TDEI.2010.5595537

    Article  Google Scholar 

  49. A.M. Nóbrega, M.L. Martinez, A.A. de Queiroz, Investigation and analysis of electrical aging of XLPE insulation for medium voltage covered conductors manufactured in Brazil. IEEE Trans. Dielectr. Electr. Insul. 20(2), 628–640 (2013)

    Article  Google Scholar 

  50. L. Boudou, J. Guastavino, Physico-chemical observations on polyethylene base resin under the effect of thermal ageing. J. Phys. D Appl. Phys. 35, 1–4 (2002)

    Article  CAS  Google Scholar 

  51. S.B. Dalal, R.S. Gorur, Aging of distribution cables in service and its simulation in the laboratory. IEEE Trans. Dielec. Elec. Insu. 12, 139–146 (2005)

    Article  CAS  Google Scholar 

  52. K. Aljoumaa, Z. Ajji, J. Radioanal. Nucl. Chem. 311, 355 (2015)

    Google Scholar 

  53. C. Stancu, P.V. Notingher, P. Notingher, M. Lungulescu, Space charge and electric field in thermally aged multilayer joints model. IEEE Trans. Dielectr. Electr. Insul. 23(2), 633–644 (2016)

    Article  CAS  Google Scholar 

  54. B. Ouyang, H. Li, X. Zhang, S. Wang, J. Li, The role of microstructure changes on space charge distribution of XLPE during thermooxidative aging. IEEE Trans. Dielectr. Electr. Insul. 24(6), 3849–3859 (2017)

    Article  CAS  Google Scholar 

  55. P.Z. Grzybowski, E. Kuffel, Changes of thermoplastic PE cable insulation properties caused by the overload current. IEEE Trans. Power Deliv. 4(3), 1507–1512 (1989)

    Article  CAS  Google Scholar 

  56. F.-B. Meng et al., Effect of thermal ageing on physico-chemical and electrical properties of EHVDC XLPE cable insulation. IEEE Trans. Dielectr. Electr. Insul. 28(3), 1012–1019 (2021). https://doi.org/10.1109/TDEI.2021.009449

    Article  CAS  Google Scholar 

  57. M. Unge, T. Christen, C. Törnkvist, Electronic structure of polyethylene—Crystalline and amorphous phases of pure polyethylene and their interfaces, In 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, Canada, 2012, 525–530, doi: https://doi.org/10.1109/CEIDP.2012.6378835.

  58. J. Kleis, B.I. Lundqvist, D.C. Langreth, E. Schröder, Towards a working density-functional theory for polymers: first-principles determination of the polyethylene crystal structure. Phys. Rev. B 76(10), 100201 (2007). https://doi.org/10.1103/physrevb.76.100201

    Article  Google Scholar 

  59. A.S. Alqarni, N.N. Yusof, A.A. Kassimu, I. Bulus, I.M. Danmallam, S. Hashim et al., Exploring the physio-elastic properties and optical band gap energies of boro-telluro-dolomite glasses infused with Nd2O3 dopants. Optik 288, 171149 (2023). https://doi.org/10.1016/j.ijleo.2023.171149

    Article  CAS  Google Scholar 

  60. D.K. Jarwal, A. Kumar, A.K. Mishra, S. Ratan, C. Kumar, D. Upadhyay et al., Efficiency improvement of TiO2 nanorods electron transport layer based perovskite solar cells by solvothermal etching. IEEE J. Photovolt. 9(6), 1699–1707 (2019). https://doi.org/10.1109/JPHOTOV.2019.2941181

    Article  Google Scholar 

  61. D.L. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5(8), 3144–3151 (1972). https://doi.org/10.1103/PhysRevB.5.3144

    Article  Google Scholar 

  62. X. Yang, Y. Zhang, H. He, M. Qiu, X. Yu, J. Li (2020) Influence of Thermal Ageing on the Optical Performance of XLPE Cable Insulation. In 2020 International Symposium on Electrical Insulating Materials (ISEIM), Tokyo, Japan, 2020, 502–505

  63. L. Chen, T.D. Huan, R. Ramprasad, Electronic structure of polyethylene: role of chemical morphological and interfacial complexity. Sci. Rep. 7, 6128 (2017). https://doi.org/10.1038/s41598-017-06357-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. A. Hashim, A. Hadi, N.A.H. Al-Aaraji, Fabrication and augmented electrical and optical characteristics of PMMA/CoFe2O4/ZnCoFe2O4 hybrid nanocomposites for quantum optoelectronics nanosystems. Opt. Quant. Electron. 55, 716 (2023). https://doi.org/10.1007/s11082-023-04994-4

    Article  CAS  Google Scholar 

  65. A. Hashim, M.H. Abbas, N.A.H. Al-Aaraji et al., Facile fabrication and developing the structural, optical and electrical properties of SiC/Y2O3 nanostructures doped PMMA for optics and potential nanodevices. SILICON 15, 1283–1290 (2023). https://doi.org/10.1007/s12633-022-02104-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehti Camalov.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camalov, M., Akin, F., Hashimov, A. et al. The Degradation Analysis of XLPE Materials Under Thermal Aging: A Comprehensive Study Through Partial Discharge Measurements and Structural Characterization Techniques. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00533-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00533-4

Keywords

Navigation