Skip to main content
Log in

Sensitivity Study of Spin-Coated Metal Oxides Thin Films for Extended Gate Field-Effect Transistor (EGFET) pH Sensor

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Increasing demand for accurate, reliable and highly sensitive pH sensors has led researchers to explore various materials for this reason. Metal oxide (MOx) pH sensors have received considerable attention due to their high degree of accuracy and great sensitivity to hydrogen ions. Additionally, this MOx pH sensor overcomes the shortcomings of the glass electrode. Thus, a comparative experimental study on various metal oxides (MOx) of TiO2, ZnO, CuO, and NiO thin films as sensing electrodes for extended-gate field effect transistor (EGFET)-pH sensor was carried out via a facile sol–gel spin-coating method. Here, the thin films were tested as pH sensors in pH 2, 4, 7, 10 and 12 and hysteresis stability for 25 min in pH 7 → 4 → 7 → 10 → 7. The pH measurements were repeated several times to confirm the sensitivity behaviour. The surface morphology and surface roughness of the films were characterized using field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The TiO2 thin films showed the highest sensitivity (53.4 mV/pH, R2 = 0.992) and lowest hysteresis value (1 mV) compared to the other sensing electrodes. Moreover, the thin film showed drift rates of 6.74, 3.52 and 41.18 mV/h for pH 10, 7 and 4. The experimental findings suggested that both surface morphology and surface roughness affect the sensitivity performance of these devices since a smooth surface morphology and low roughness value were observed for TiO2 thin films. Besides, the basic mechanism of MOx pH sensor was presented in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Pan, S. Luo, B. Yan, J. Ye, S. Zhang, J. Electroanal. Chem. 929, 117103 (2023)

    Article  CAS  Google Scholar 

  2. L. Manjakkal, D. Szwagierczak, R. Dahiya, Prog. Mater. Sci. 109, 100635 (2020)

    Article  CAS  Google Scholar 

  3. K. Uppuluri, M. Lazouskaya, D. Szwagierczak, K. Zaraska, M. Tamm, Sensors 21, 1–15 (2021)

    Article  Google Scholar 

  4. T.M. Pan, C.H. Lin, S.T. Pang, IEEE Sens. J. 21, 2597–2603 (2021)

    Article  CAS  ADS  Google Scholar 

  5. S. Palit, J.L. Her, S.T. Pang, T.M. Pan, Sensors Actuators A Phys. 357, 114392 (2023)

    Article  CAS  Google Scholar 

  6. T. Pan, C. Yang, S. Pang, Mater. Sci. Semicond. Process. 164, 107639 (2023)

    Article  CAS  Google Scholar 

  7. M. Al HadiZulkefle et al., J. Teknol. 83(4), 119–125 (2021)

    Google Scholar 

  8. C. Chen, Y. Zhang, H. Gao, K. Xu, X. Zhang, Chemosensors 10(182), 1–15 (2022)

    Google Scholar 

  9. A.B. Rosli, Z. Awang, S.S. Shariffudin, S.H. Herman, Mater. Res. Express 6(016419), 2–8 (2019)

    Google Scholar 

  10. A.K. Mishra, D.K. Jarwal, B. Mukherjee, A. Kumar, S. Ratan, S. Jit, IEEE Sens. J. 20, 5039–5047 (2020)

    Article  CAS  ADS  Google Scholar 

  11. H.H. Li, W.S. Dai, J.C. Chou, H.C. Cheng, IEEE Electron Device Lett. 33, 1495–1497 (2012)

    Article  CAS  ADS  Google Scholar 

  12. H.A. Khizir, T.A.H. Abbas, Sensors Actuators A Phys. 333, 113231 (2022)

    Article  CAS  Google Scholar 

  13. C.C. Yang, K.Y. Chen, Y.K. Su, Coatings 9(4), 1–7 (2019)

    Article  Google Scholar 

  14. L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak, G. Stojanovic, J. Electroanal. Chem. 759, 82–90 (2015)

    Article  CAS  Google Scholar 

  15. K.A. Yusof, R. Abdul Rahman, M.A.H. Zulkefle, S.H. Herman, W.F.H. Abdullah, J. Sensors 7594531, 1–9 (2016)

  16. A. Das, D. Hsu, C. Chen, L. Chang, C. Lai, Sensors Actuators B. Chem. 205, 199–205 (2014)

    Article  CAS  Google Scholar 

  17. N.H. Al-Hardan et al., Sensors 16(6), 1–12 (2016)

    Article  Google Scholar 

  18. R.A. Rahman, M.A.H. Zulkefle, N.S.M. Kamar, Z. Mohamad, S.H. Herman, Solid State Phenom. 301, 43–51 (2020)

    Article  Google Scholar 

  19. N. Parimon, M.H. Mamat, A.S. Zoolfakar, M.F. Malek, M. Shameem Banu, Vasimalai, Rusop, I.B., N., J. Electr. Electron. Syst. Res., 16, 28–34 (2020)

  20. A. Nezamzadeh-Ejhieh, Z. Nematollahi, Electrochim. Acta. Acta 56(24), 8334–8341 (2011)

    Article  CAS  Google Scholar 

  21. M.A.H. Zulkefle, R. Abdul Rahman, K.A. Yusof, W.F.H. Abdullah, M. Rusop, S.H. Herman, J. Sensors, 9746156, 1–8 (2016)

  22. M.A. Zulkefle, R.A. Rahman, K.A. Yusoff, W.F.H. Abdullah, M. Rusop, S.H. Herman, AIP Conf. Proc., 1963 (2018)

  23. A. Bazilah et al., Int. J. Hydrog. EnergyHydrog. Energy 48(4), 1636–1648 (2023)

    Article  Google Scholar 

  24. F.A. Sabah, N.M. Ahmed, Z. Hassan, M.A. Almessiere, Mater. Sci. Semicond. Process. 71, 217–225 (2017)

    Article  CAS  Google Scholar 

  25. T. Rao et al., ACS Omega 6, 32297–32303 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D. Abubakar, N.M. Ahmed, Z.U. Zango, Proceedings of the 6th International Conference on Fundamental and Applied Sciences (2021), pp. 303–313

  27. P. Yao, J. Chiang, M. Lee, Solid State Sci. 28, 47–54 (2014)

    Article  CAS  Google Scholar 

  28. A. Porwal, N. Shafi, C. Sahu, Silicon, 0–11 (2022)

  29. K. Singh, S. Pang, T. Pan, IEEE Trans. Electron Devices 68(2), 793–797 (2021)

    Article  CAS  ADS  Google Scholar 

  30. S.-P. Chang, C.-H. Chen, S.-B. Liu, Coatings, 11, 929, 1–92 (2021)

  31. X. Wang, L. Sun, T. Wang, Y. Shi, IEEE Sens. J., 20, 24, 14598–14606 (2020)

  32. F.A. Sabah, N.M. Ahmed, Z. Hassan, M.A. Almessiere, Dig. J. Nanomater. Biostructures 11(3), 787–793 (2016)

    Google Scholar 

  33. F.A. Sabah, N.M. Ahmed, Z. Hassan, M.A. Almessiere, N.H. Al-Hardan, Miner. Met. Mater. Soc. Sensit. 69, 1134–1142 (2016)

    Article  Google Scholar 

  34. S. Palit, B.-S. Lou, J.-L. Her, S.-T. Pang, T.-M. Pan, J. Electrochem. Soc. 166(6), B407–B413 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education Malaysia under Fundamental Research Grant Scheme under the (Project Code: FRGS/1/2021/TK0/UITM/02/50)). The authors fully acknowledged the technical support from NANO-ElecTronic Centre (NET) and Institute of Science (IOS), Universiti Teknologi MARA (UiTM).

Funding

This study received funding from the Ministry of Higher Education Malaysia under Fundamental Research Grant Scheme (Project Code: FRGS/1/2021/TK0/UITM/02/50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukreen Hana Herman.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamarozaman, N.S., Zainal, N., Zulkefle, M.A. et al. Sensitivity Study of Spin-Coated Metal Oxides Thin Films for Extended Gate Field-Effect Transistor (EGFET) pH Sensor. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00522-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00522-7

Keywords

Navigation