Skip to main content
Log in

Parametric Optimization for Highly Sensitive ZnO Based NOX Gas Sensor

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

NOX (NO, NO2) is one of the most hazardous gases for the environment as well as human health. In this research, NOX (NO, NO2) gas sensor is fabricated by using a zinc oxide (ZnO) thin film. The study explored the impact of sensing layer thickness variations on gas sensing. In this work sensing response is analyzed at different thicknesses and the optimum thickness for better response. For the given samples with 355 nm optimum thickness at 180 °C optimal operating temperature, it is discovered that the sensing response with bare ZnO thin film increased dramatically from 0.1 to 8.6. The analysis has been carried out at different detecting surface thicknesses for the gas concentration of 500 ppm. In this study, the impacts of varying the ZnO-based thin film thickness are investigated through optical, structural, and gas-sensing characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.U. Abideen et al., Electrospun metal oxide composite nanofibers gas sensors: A review. J. Korean Ceram. Soc. 54(5), 366–379 (2017)

    Article  Google Scholar 

  2. P. Shankar, J.B.B. Rayappan, Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases- a review. Sci. Lett. J 4(4), 126 (2015)

    Google Scholar 

  3. L. Castañeda, M. Gonzalez-Alatriste, M. Avendaño-Alejo, Thin solid films semiconducting metal oxide gas sensors: a brief review. Sens. Lett. 14(4), 331–345 (2016). https://doi.org/10.1166/sl.2016.3631

    Article  Google Scholar 

  4. S. Basu, P.K. Basu, Nanocrystalline metal oxides for methane sensors: role of noble metals. J. Sens. 2009 (2009)

  5. S. Bedoui, S. Gomri, H. Charfeddine Samet, A. Kachouri, Design and simulation of microelectromechanical systems (MEMS) for ozone gas sensors. Trans. Electr. Electron. Mater. 19, 41–46 (2018)

    Article  Google Scholar 

  6. T. Zhang et al., Multi-component ZnO alloys: bandgap engineering, hetero-structures, and optoelectronic devices. Mater. Sci. Eng. R. Rep. 147, 100661 (2022). https://doi.org/10.1016/j.mser.2021.100661

    Article  Google Scholar 

  7. P.-C. Chen, G. Shen, C. Zhou, Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE Trans. Nanotechnol. 7(6), 668–682 (2008)

    Article  ADS  Google Scholar 

  8. G.N. Narayanan, R. Sankar Ganesh, A. Karthigeyan, Effect of annealing temperature on structural, optical and electrical properties of hydrothermal assisted zinc oxide nanorods. Thin Solid Films 598, 39–45 (2016). https://doi.org/10.1016/j.tsf.2015.11.071

    Article  ADS  CAS  Google Scholar 

  9. P. Rai, S. Raj, K. Ko, K.-K. Park, Y. Yu, Synthesis of flower-like ZnO microstructures for gas sensor applications. Sens. Actuators, B Chem. 178, 107–112 (2013). https://doi.org/10.1016/j.snb.2012.12.031

    Article  CAS  Google Scholar 

  10. D. Gal, G. Hodes, D. Lincot, H.-W. Schock, Electrochemical deposition of zinc oxide films from non-aqueous solution: a new buffer/window process for thin film solar cells. Thin Solid Films 361, 79–83 (2000)

    Article  ADS  Google Scholar 

  11. T. Shibata, K. Unno, E. Makino, Y. Ito, S. Shimada, Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe. Sens. Actuators A: Phys. 102(1–2), 106–113 (2002). https://doi.org/10.1016/s0924-4247(02)00339-4

    Article  CAS  Google Scholar 

  12. C. Gu, L. Shanshan, J. Huang, C. Shi, J. Liu, Preferential growth of long ZnO nanowires and its application in gas sensor. Sens. Actuators B: Chem. 177, 453–459 (2013). https://doi.org/10.1016/j.snb.2012.11.044

    Article  CAS  Google Scholar 

  13. L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators, A 267, 242–261 (2017). https://doi.org/10.1016/j.sna.2017.10.021

    Article  CAS  Google Scholar 

  14. N. Isaac, I. Pikaar, G. Biskos, Metal oxide semiconducting nanomaterials for air quality gas sensors: operating principles, performance, and synthesis techniques. Microchim. Acta 189(5), 1–22 (2022)

    Article  Google Scholar 

  15. K. Haddad et al., SnO2 nanostructured thin films for room-temperature gas sensing of volatile organic compounds. ACS Appl. Mater. Interfaces 10(35), 29972–29981 (2018)

    Article  CAS  PubMed  Google Scholar 

  16. A. Mirzaei, H.R. Ansari, M. Shahbaz, J.-Y. Kim, H.W. Kim, S.S. Kim, Metal oxide semiconductor nanostructure gas sensors with different morphologies. Chemosensors 10(7), 289 (2022)

    Article  CAS  Google Scholar 

  17. P. Patial, M. Deshwal, Selectivity and sensitivity property of metal oxide semiconductor based gas sensor with dopants variation: a review. Trans. Electr. Electron. Mater. 23, 1–13 (2021)

    Google Scholar 

  18. K. Seshan, Handbook of Thin-film Deposition Processes and Techniques (CRC Press, Baca Raton, 2002)

    Google Scholar 

  19. S.J. Mezher, K.J. Kadhim, O.M. Abdulmunem, M.K. Mejbel, Microwave properties of Mg–Zn ferrite deposited by the thermal evaporation technique. Vacuum 173, 109114 (2020)

    Article  ADS  CAS  Google Scholar 

  20. S.P. David, R. Gaume, Electroluminescent thin film phosphors, in Thin Film Structures in Energy Applications. (Springer, Cham, 2015), pp.243–269

    Chapter  Google Scholar 

  21. J. Huang et al., Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property. Sens. Actuators, B Chem. 146(1), 206–212 (2010). https://doi.org/10.1016/j.snb.2010.02.052

    Article  CAS  Google Scholar 

  22. K. Anand, O. Singh, M.P. Singh, J. Kaur, R.C. Singh, Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B: Chem. 195, 409–415 (2014). https://doi.org/10.1016/j.snb.2014.01.029

    Article  CAS  Google Scholar 

  23. S.C. Navale, V. Ravi, I.S. Mulla, S. Gosavi, S.K. Kulkarni, Low temperature synthesis and NOx sensing properties of nanostructured Al-doped ZnO. Sens. Actuators B: Chem 126(2), 382–386 (2007). https://doi.org/10.1016/j.snb.2007.03.019

    Article  CAS  Google Scholar 

  24. L.B. Capeletti, F.L. Bertotto, J.H.Z. dos Santos, E. Moncada, M.B. Cardoso, The effect of the sol–gel route on the characteristics of acid–base sensors. Sens. Actuators B: Chem. 151(1), 169–176 (2010). https://doi.org/10.1016/j.snb.2010.09.026

    Article  CAS  Google Scholar 

  25. S. Islam, N. Bidin, S. Riaz, G. Krishnan, S. Naseem, Sol–gel based fiber optic pH nanosensor: structural and sensing properties. Sens. Actuators, A 238, 8–18 (2016). https://doi.org/10.1016/j.sna.2015.12.003

    Article  CAS  Google Scholar 

  26. Y. Zhang, S.-W. Ng, X. Lu, Z. Zheng, Solution-processed transparent electrodes for emerging thin-film solar cells. Chem. Rev. 120(4), 2049–2122 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. F. Wang et al., A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method. RSC Adv. 6(83), 79343–79349 (2016). https://doi.org/10.1039/c6ra13876d

    Article  ADS  CAS  Google Scholar 

  28. M. Deshwal, A. Arora, Enhanced acetone detection using Au doped ZnO thin film sensor. J. Mater. Sci. Mater. Electron. 29(18), 15315–15320 (2018)

    Article  CAS  Google Scholar 

  29. M. Okubo, T. Kuwahara, New Technologies for Emission Control in Marine Diesel Engines (Butterworth-Heinemann, Oxford, 2020)

    Google Scholar 

  30. C.Y. Lin, Y.Y. Fang, C.-W. Lin, J.J. Tunney, K. Ho, Fabrication of NOx gas sensors using In2O3–ZnO composite films. Sens. Actuators B: Chem 146(1), 28–34 (2010). https://doi.org/10.1016/j.snb.2010.02.040

    Article  CAS  Google Scholar 

  31. A. Olabi, T. Wilberforce, M.A. Abdelkareem, Fuel cell application in the automotive industry and future perspective. Energy 214, 118955 (2021)

    Article  Google Scholar 

  32. A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens. Actuators, B Chem. 171–172, 25–42 (2012). https://doi.org/10.1016/j.snb.2012.05.026

    Article  CAS  Google Scholar 

  33. T.V.K. Karthik et al., Sprayed ZnO thin films for gas sensing: effect of substrate temperature, molarity and precursor solution. J. Mater. Sci. Mater. Electron. 31(10), 7470–7480 (2020). https://doi.org/10.1007/s10854-020-02987-7

    Article  CAS  Google Scholar 

  34. M. Alam et al., Solution processing of cadmium sulfide buffer layer and aluminum-doped zinc oxide window layer for thin films solar cells. Surf. Rev. Lett. 21(04), 1450059 (2014)

    Article  ADS  Google Scholar 

  35. B. Sathyaseelan et al., Structural, optical and morphological properties of post-growth calcined TiO2 nanopowder for opto-electronic device application: ex-situ studies. J. Alloy. Compd. 671, 486–492 (2016)

    Article  CAS  Google Scholar 

  36. S. Jurablu, M. Farahmandjou, T. Firoozabadi, Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: study of structural and optical properties. J. Sci. Islamic Republic of Iran 26(3), 281–285 (2015)

    Google Scholar 

  37. M. Hassan, W. Khan, A. Azam, A.Z. Naqvi, Effect of size reduction on structural and optical properties of ZnO matrix due to successive doping of Fe ions. J. Lumin. 145, 160–166 (2014). https://doi.org/10.1016/j.jlumin.2013.06.024

    Article  CAS  Google Scholar 

  38. S. Kaur, M. Deshwal, Study of molarity concentration variation over optical, structural and gas sensing response for ZnO thin film based NOx gas sensor. Trans. Electr. Electron. Mater. 20(4), 309–314 (2019)

    Article  Google Scholar 

  39. F. Bozon-Verduraz, A. Omar, J. Escard, B. Pontvianne, Chemical state and reactivity of supported palladium: I. Characterization by XPS and uv-visible spectroscopy. J. Catal. 53(1), 126–134 (1978)

    Article  CAS  Google Scholar 

  40. A. Arora, M. Deshwal, Enhanced sensitivity with thickness optimization of ZnO based acetone sensor. Indian J. Pure Appl. Phys. 56(5), 367–372 (2018)

    Google Scholar 

  41. N. Grossiord, O. Regev, J. Loos, J. Meuldijk, C.E. Koning, Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV−visible spectroscopy. Anal. Chem. 77(16), 5135–5139 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. C. Balamurugan, S.-J. Song, D.-W. Lee, Porous nanostructured GdFeO3 perovskite oxides and their gas response performance to NOx. Sens. Actuators, B Chem. 272, 400–414 (2018). https://doi.org/10.1016/j.snb.2018.05.125

    Article  CAS  Google Scholar 

  43. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators, B Chem. 5(1–4), 7–19 (1991)

    Article  CAS  Google Scholar 

  44. A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206–217 (2018)

    Article  CAS  Google Scholar 

  45. J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28(5), 795–831 (2016)

    Article  CAS  PubMed  Google Scholar 

  46. L. Liu et al., Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sens. Actuators, B Chem. 155(2), 782–788 (2011)

    Article  CAS  Google Scholar 

  47. M.R. Miah et al., Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review. Sens. Actuators A: Phys. 7, 113933 (2002)

    Google Scholar 

  48. A. Kukla, Y.M. Shirshov, S. Piletsky, Ammonia sensors based on sensitive polyaniline films. Sens. Actuators, B Chem. 37(3), 135–140 (1996)

    Article  CAS  Google Scholar 

  49. P. Singh, F.M. Simanjuntak, Y.-C. Wu, A. Kumar, H.-W. Zan, T.-Y. Tseng, Sensing performance of gas sensors fabricated from controllably grown ZnO-based nanorods on seed layers. J. Mater. Sci. 55, 8850–8860 (2020)

    Article  ADS  CAS  Google Scholar 

  50. C. Samanta, A. Ghatak, A. Raychaudhuri, B. Ghosh, ZnO/Si nanowires heterojunction array-based nitric oxide (NO) gas sensor with noise-limited detectivity approaching 10 ppb. Nanotechnology 30(30), 305501 (2019)

    Article  CAS  PubMed  Google Scholar 

  51. H.-Y. Lee, Y.-C. Heish, C.-T. Lee, High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane. J. Alloy. Compd. 773, 950–954 (2019)

    Article  CAS  Google Scholar 

  52. Y.-T. Tsai et al., High sensitivity of NO gas sensors based on novel Ag-doped ZnO nanoflowers enhanced with a UV light-emitting diode. ACS Omega 3(10), 13798–13807 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Deshwal.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest to report regarding the present manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Sharma, T. & Deshwal, M. Parametric Optimization for Highly Sensitive ZnO Based NOX Gas Sensor. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00521-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00521-8

Keywords

Navigation