Skip to main content
Log in

Investigating the Electrical and Optical Properties of Nickle and Strontium Co-Doped CsPbBr3 Nanocrystals: Potential Absorber Material for Perovskite Solar Cells

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the optoelectronic characteristics of cesium-based all-inorganic perovskite (AIP) nanocrystals (NCs) are examined in relation to Sr/Ni doping. These nanocrystals are synthesized via the hot injection method and then examined for compositional, morphological, optical, and electrical characteristics. Scanning electron microscopy reveals the homogeneous and compact NCs clusters while Atomic Force Microscopy (AFM) studies shows smooth film morphology with a narrow size distribution. X-ray diffraction analysis confirmed the monoclinic perovskite structure and excellent crystallinity. Similarly, Fourier-transform infrared spectroscopy has shown evidence for the existence of long-chain organic ligands employed for the stability and passivation of the NCs. High absorbance in the visible region is seen by UV–Visible spectroscopy, with a band gap of 2.44–2.48 eV while steady-state photoluminescence spectroscopy indicates low lattice defects and high crystallinity. Doping with Sr/Ni increased the bulk charge carrier concentration up to 3.70 × 1016 cm−3 and decreased the resistivity to 4.61 × 103 Ω cm as compared to 1.45 × 1013 cm−3 and 8.58 × 103 Ω cm respectively according to measurements made using the hall effect measurments. The doped AIP NCs displayed excellent thermal stability up to 545 °C. The Ni/Sr doping has resulted in obtaining improved properties in CsPbBr3 perovskite NCs for optoelectronic application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Ling, J. Yuan, W. Ma, The rise of colloidal lead halide perovskite quantum dot solar cells. Acc. Mater. Res. (2022). https://doi.org/10.1021/accountsmr.2c00081

    Article  Google Scholar 

  2. B. Yu, S. Tan, D. Li, Q. Meng, The stability of inorganic perovskite solar cells : from materials to devices. Mater. Fut. 2, 032101 (2023)

    Article  ADS  Google Scholar 

  3. Y. Tong et al., Highly luminescent Cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chemie Int. Ed. 55(44), 13887–13892 (2016). https://doi.org/10.1002/anie.201605909

    Article  CAS  Google Scholar 

  4. R. Fukamizu, N. Aso, Y. Shiratori, S. Miyajima, Nanocrystalline gallium nitride electron transport layer for cesium lead bromide photovoltaic power converter in blue light optical wireless power transmission. Jpn. J. Appl. Phys.. J. Appl. Phys. 62, SK1035 (2023)

    Article  Google Scholar 

  5. M. Palabathuni, S. Akhil, R. Singh, N. Mishra, Charge transfer in photoexcited cesium-lead halide perovskite nanocrystals: review of materials and applications. ACS Appl. Nano Mater. (2022). https://doi.org/10.1021/acsanm.2c01550

    Article  Google Scholar 

  6. A. Raman, C. Chaturvedi, N. Kumar, Multi-quantum well-based solar Cell, in Electrical and electronic devices, circuits, and materials. ed. by S.L. Tripathi, P.A. Alvi, U. Subramaniam (Wiley, New York, 2021), pp.351–372. https://doi.org/10.1002/9781119755104.ch19

    Chapter  Google Scholar 

  7. N. Gandhi et al., Gate Oxide Induced Reliability Assessment of Junctionless FinFET-based hydrogen gas sensor, in Proceedings of the IEEE Sensors, no. c, pp. 1–4 (2023). https://doi.org/10.1109/SENSORS56945.2023.10324885.

  8. Y. Kanemitsu, Halide perovskite nanocrystals: unique luminescence materials. J. Lumin.Lumin. 251, 119207 (2022). https://doi.org/10.1016/j.jlumin.2022.119207

    Article  ADS  CAS  Google Scholar 

  9. K. Kano, Y. Iso, Effects of perfluorodecanoic acid on the photostability and self-recovery of cesium lead bromide nanocrystals effects of per fluorodecanoic acid on the photostability and self-recovery of cesium lead bromide nanocrystals. ECS J. Solid State Sci. Technol. 12, 056003 (2023). https://doi.org/10.1149/2162-8777/acd214

    Article  ADS  Google Scholar 

  10. J.M. Luther, A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, Quantum dot–induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science (80-) 354(6308), 92–95 (2016). https://doi.org/10.1126/science.aag2700

    Article  ADS  CAS  Google Scholar 

  11. E.M. Sanehira et al., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. (2017). https://doi.org/10.1126/sciadv.aao4204

    Article  PubMed  PubMed Central  Google Scholar 

  12. Z. Zhang et al., Significant improvement in the performance of PbSe quantum dot solar cell by introducing a CsPbBr3 perovskite colloidal nanocrystal back layer. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201601773

    Article  Google Scholar 

  13. M.A. Basit, M. Rashid, T.F. Khan, M. Muhyuddin, S. Butt, Simplistic thermal transformation of MIL-125 to TiO2 nano-coins and nano-diamonds for efficient quantum-dot sensitized solar cells. Mater. Sci. Semicond. Process.Semicond. Process. 104, 104663 (2019). https://doi.org/10.1016/j.mssp.2019.104663

    Article  CAS  Google Scholar 

  14. H.M. Naeem et al., HF-based surface modification for enhanced photobiological and photochemical performance of ZnO and ZnO/CdS hierarchical structures. Mater. Chem. Phys. 252, 123190 (2020). https://doi.org/10.1016/j.matchemphys.2020.123190

    Article  CAS  Google Scholar 

  15. Liming Ding, C. Yi, M. Li, Ch 5, 5.1 Basic concepts and principles of doping 5.2 Applications of Doping and Alloying in Perovskite (2022), ISBN: 978-3-527-34924-1, Wiley-VCH

  16. H. Cheng, Y. Feng, Y. Fu, Y. Zheng, Y. Shao, Y. Bai, Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes. J. Mater. Chem. C (2022). https://doi.org/10.1039/d2tc01869a

    Article  Google Scholar 

  17. M.A. Padhiar et al., Sr2+ doped CsPbBrI2 perovskite nanocrystals coated with ZrO2 for applications as white LEDs. Nanotechnology 34(27), 275201 (2023). https://doi.org/10.1088/1361-6528/acc9cc

    Article  Google Scholar 

  18. N. Mireles Villegas, J.C. Hernandez, J.C. John, M. Sheldon, Promoting solution-phase superlattices of CsPbBr3 nanocrystals. Nanoscale 15(22), 9728–9737 (2023). https://doi.org/10.1039/d3nr00693j

    Article  CAS  PubMed  Google Scholar 

  19. S.J.F. Byrnes, Basic theory and phenomenology of polarons. pp. 2–6 (2008), Department of Physics, University of California at Berkeley, Berkeley, CA 94720 December 2, 2008. https://sjbyrnes.com/FinalPaper--Polarons.pdf

  20. Y. Yamada, Y. Kanemitsu, Electron-phonon interactions in halide perovskites. NPG Asia Mater. (2022). https://doi.org/10.1038/s41427-022-00394-4

    Article  Google Scholar 

  21. W. Tao, Y. Zhang, H. Zhu, Dynamic exciton polaron in two-dimensional lead halide perovskites and implications for optoelectronic applications. Acc. Chem. Res. 55(3), 345–353 (2022). https://doi.org/10.1021/acs.accounts.1c00626

    Article  CAS  PubMed  Google Scholar 

  22. M. Sajedi et al., Is there a polaron signature in angle-resolved photoemission of CsPbBr3? Phys. Rev. Lett. 128(17), 176405 (2022). https://doi.org/10.1103/PhysRevLett.128.176405

    Article  ADS  CAS  PubMed  Google Scholar 

  23. “The Hall Effect 1 Background., the Washington University online course data, available at https://courses.washington.edu/phys431/hall_effect/hall_effect.pdf

  24. S. Li et al., Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices. Chem. Mater. 31(11), 3917–3928 (2019). https://doi.org/10.1021/acs.chemmater.8b05362

    Article  ADS  CAS  Google Scholar 

  25. Y. Cao, D. Wu, P. Zhu, D. Shan, X. Zeng, J. Xu, Down-shifting and anti-reflection effect of cspbbr3 quantum dots/multicrystalline silicon hybrid structures for enhanced photovoltaic properties. Nanomaterials 10(4), 775 (2020). https://doi.org/10.3390/nano10040775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M.C. Wu, W.C. Chen, S.H. Chan, W.F. Su, The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications. Appl. Surf. Sci. 429, 9–15 (2018). https://doi.org/10.1016/j.apsusc.2017.08.131

    Article  ADS  CAS  Google Scholar 

  27. M. Asemi, M. Ghanaatshoar, Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising Mg-doped CuCrO2. J. Mater. Sci. 52(1), 489–503 (2017). https://doi.org/10.1007/s10853-016-0348-z

    Article  ADS  CAS  Google Scholar 

  28. A. Saqib, J. Sofia, A. Muhammad, U. Muhammad, A.A. Muhammad, Synthesis and characterization of CsPbBr3 for perovskite solar cells. Key Eng. Mater. (KEM) 875, 3–9 (2021). https://doi.org/10.4028/www.scientific.net/KEM.875.3

    Article  Google Scholar 

  29. P. Singh, A. Raman, N. Kumar, Spectroscopic and simulation analysis of facile PEDOT:PSS layer deposition-silicon for perovskite solar cell. SILICON 12(8), 1769–1777 (2020). https://doi.org/10.1007/s12633-019-00284-5

    Article  CAS  Google Scholar 

  30. V.R. Yandri, P. Wulandari, R. Hidayat, Photoluminescence properties of CsPbCl3 and CsPbBr3 nanocrystals synthesized by LARP method with various ligands and anti-solvents. J. Phys. Conf. Ser. 2243(1), 5 (2022). https://doi.org/10.1088/1742-6596/2243/1/012120

    Article  Google Scholar 

  31. S.M.H. Qaid, H.M. Ghaithan, A.S. Aldwayyan, Investigation of the amplified spontaneous emission threshold of cesium lead bromide perovskite quantum dots at different excitation wavelengths. ECS J. Solid State Sci. Technol. 12(5), 055012 (2023). https://doi.org/10.1149/2162-8777/acd6bc

    Article  ADS  Google Scholar 

  32. A. Sutar, S. Balwadkar, S. Doke, A. Shinde, S. Kulkarni, S. Kahane, Enhancement in photoluminescence of nematic liquid crystals doped with CsPbBr3 quantum dots. J. Phys. Conf. Ser. 2426(1), 012049 (2023). https://doi.org/10.1088/1742-6596/2426/1/012049

    Article  Google Scholar 

  33. A. Nawaz et al., Insights into optoelectronic properties of anti-solvent treated perovskite films. Artic. J. Mater. Sci. Mater. Electron. 28, 15630–15636 (2017). https://doi.org/10.1007/s10854-017-7451-z

    Article  CAS  Google Scholar 

  34. J. Li et al., CsPbBr3 perovskite quantum dots: saturable absorption properties and passively Q-switched visible lasers. Photon. Res. 5(5), 457 (2017). https://doi.org/10.1364/prj.5.000457

    Article  ADS  CAS  Google Scholar 

  35. N. Aso, H. Tani, R. Fukamizu, H. Shimizu, S. Miyajima, Improvement of carrier transport properties of CsPbBr3 thin films by moisture absorption and TbCl3 doping technique. Jpn. J. Appl. Phys.. J. Appl. Phys. 62, 1 (2023). https://doi.org/10.35848/1347-4065/acd38d

    Article  Google Scholar 

  36. Z. Yang et al., Engineering the exciton dissociation in quantum-confined 2D CsPbBr3 nanosheet films. Adv. Funct. Mater.Funct. Mater. 28(14), 1705908 (2018). https://doi.org/10.1002/adfm.201705908

    Article  CAS  Google Scholar 

  37. Q. Wang et al., Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105(16), 3–9 (2014). https://doi.org/10.1063/1.4899051

    Article  CAS  Google Scholar 

  38. B. Ebenhoch, S.A.J. Thomson, K. Genevičius, G. Juška, I.D.W. Samuel, Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance. Org. Electron. 22, 62–68 (2015). https://doi.org/10.1016/j.orgel.2015.03.013

    Article  CAS  Google Scholar 

  39. A. Shaheen, W. Zia, M.S. Anwar, Band structure and electrical conductivity in semiconductors, 2010. Accessed: Jul. 05, 2020 (online). Available: http://www.inst.eecs.berkeley.edu.

  40. J.B. Hoffman, G. Zaiats, I. Wappes, P.V. Kamat, CsPbBr3 Solar cells: controlled film growth through layer-by-layer quantum dot deposition. Chem. Mater. (2017). https://doi.org/10.1021/acs.chemmater.7b03751

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Javed.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This work has not been published previously and is not under consideration for publication elsewhere. It is further added that the manuscript is approved by all authors and if accepted, it will not be published elsewhere in the same form, in English or any other language, without the written consent of the Publisher. All authors help shape the research and provided critical feedback, approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 134 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Javed, S., Akram, M.A. et al. Investigating the Electrical and Optical Properties of Nickle and Strontium Co-Doped CsPbBr3 Nanocrystals: Potential Absorber Material for Perovskite Solar Cells. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00520-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00520-9

Keywords

Navigation