Skip to main content
Log in

Consistent Performance ZnO TFT Based Single Transistor Nonvolatile Memory with Minimal Charge Loss

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

This article reports transparent bottom gate ZnO TFT based single transistor nonvolatile memory (NVM). Here current voltage hysteresis of this TFT structure has been thoroughly explored, where acceptor trap in the channel captures electrons during forward scanning resulting into threshold voltage hike in reverse scanning. This mobile charge carrier capture and release at the channel and oxide interface have been implicated in hysteresis. Additionally, it is validated using different geometrical and device parameter variations of TFT, such as channel length, temperature variation, oxide thickness, and energy level. The current ION/IOFF ratio was found to be in the range of ~ 109, which was responsible for the rapid switching memory speed. In addition, it was observed that the threshold voltage is impacted by programming and erase operations for various time steps. Moreover, the prospective use of the proposed NVM had a retention time for memory more than 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data used in this manuscript and will be made available if required.

References

  1. H. You, W. Cho, Nonvolatile Poly-Si TFT Charge-Trap Flash Memory with Engineered tunnel barrier. IEEE Electron. Device Lett. 33, 170–172 (2012). https://doi.org/10.1109/LED.2011.2177060

    Article  ADS  CAS  Google Scholar 

  2. T.H. Hsu, H.T. Lue, Y.C. King et al., A high-performance body-tied FinFET Bandgap Engineered SONOS (BE-SONOS) for NAND-type flash memory. IEEE Electron. Device Lett. 28, 443–445 (2007). https://doi.org/10.1109/LED.2007.895421

    Article  ADS  Google Scholar 

  3. T.C. Chen, T.C. Chang, F.Y. Jian et al., Improvement of memory state misidentification caused by trap-assisted GIDL current in a SONOS-TFT memory device. IEEE Electron. Device Lett. 30, 834–836 (2009). https://doi.org/10.1109/LED.2009.2023827

    Article  ADS  CAS  Google Scholar 

  4. E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel et al., Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 17, 590–594 (2005). https://doi.org/10.1002/adma.200400368

    Article  CAS  Google Scholar 

  5. M. Wang, X. Li, X. Xiong et al., High-Performance Flexible ZnO Thin-Film transistors by Atomic Layer Deposition. IEEE Electron. Device Lett. 40, 419–422 (2019). https://doi.org/10.1109/LED.2019.2895864

    Article  ADS  CAS  Google Scholar 

  6. S. Deng, R. Chen, G. Li et al., Investigation of high-performance ITO-stabilized ZnO TFTs with hybrid-phase microstructural channels. IEEE Trans. Electron. Devices. 64, 3174–3182 (2017). https://doi.org/10.1109/TED.2017.2711199

    Article  ADS  CAS  Google Scholar 

  7. S.M. Evans, N.C. Giles, L.E. Halliburton, L.A. Kappers, Further characterization of oxygen vacancies and zinc vacancies in electron-irradiated ZnO. J. Appl. Phys. 103 (2008). https://doi.org/10.1063/1.2833432

  8. N. Zhang, W. Zhao, X. Zhang et al., Transparent floating gate memory based on ZnO Thin Film Transistor with controllable memory window. IEEE J. Electron. Devices Soc. 10, 275–280 (2022). https://doi.org/10.1109/JEDS.2022.3159787

    Article  CAS  Google Scholar 

  9. J.S. Kim, S. Kang, Y. Jang et al., Investigating the reasons for the difficult erase operation of a charge-trap flash memory device with amorphous Oxide Semiconductor Thin-Film Channel Layers. Phys. Status Solidi - Rapid Res. Lett. 15, 1–7 (2021). https://doi.org/10.1002/pssr.202000549

    Article  CAS  Google Scholar 

  10. F.B. Oruc, F. Cimen, A. Rizk et al., Thin-film ZnO charge-trapping memory cell grown in a single ALD step. IEEE Electron. Device Lett. 33, 1714–1716 (2012). https://doi.org/10.1109/LED.2012.2219493

    Article  ADS  CAS  Google Scholar 

  11. L. Perniola, S. Bernardini, G. Iannaccone et al., Analytical model of the effects of a nonuniform distribution of stored charge on the electrical characteristics of discrete-trap nonvolatile memories. IEEE Trans. Nanotechnol. 4, 360–368 (2005). https://doi.org/10.1109/TNANO.2005.847033

    Article  ADS  Google Scholar 

  12. B.B. Kumar, P.K. Tiwari, S. Dubey, K. Singh, Design and investigation of ZnO based thin film transistors for high-speed AMLCD pixel circuit applications. Micro Nanostruct. 164 (2022). https://doi.org/10.1016/j.spmi.2021.107122

  13. Y.S. Park, J.S. Lee, Design of an efficient charge-trapping layer with a built-in tunnel barrier for reliable organic-transistor memory. Adv. Mater. 27, 706–711 (2015). https://doi.org/10.1002/adma.201404625

    Article  CAS  PubMed  Google Scholar 

  14. K.J. Yoon, Y. Kim, C.S. Hwang, What will come after V-NAND—Vertical Resistive switching memory? Adv. Electron. Mater. 5, 1–15 (2019). https://doi.org/10.1002/aelm.201800914

    Article  CAS  Google Scholar 

  15. S.J. Ding, X. Wu, Superior Atomic Layer Deposition Technology for Amorphous Oxide Semiconductor Thin-Film Transistor Memory devices. Chem. Mater. 32, 1343–1357 (2020). https://doi.org/10.1021/acs.chemmater.9b03237

    Article  CAS  Google Scholar 

  16. A. Sheikholeslami, P.G. Gulak, S. Member, A Survey of Circuit innovations in Ferroelectric Random-Access Memories. Proc. IEEE. 88, 667–689 (2000)

    Article  Google Scholar 

  17. E. Kim, Y. Kim, D. Han Kim et al., SiNx charge-trap nonvolatile memory based on ZnO thin-film transistors. Appl. Phys. Lett. 99, 23–26 (2011). https://doi.org/10.1063/1.3640221

    Article  CAS  Google Scholar 

  18. M.S. Oh, K. Lee, J.H. Song et al., Improving the Gate Stability of ZnO Thin-Film transistors with Aluminum Oxide Dielectric Layers. J. Electrochem. Soc. 155, H1009 (2008). https://doi.org/10.1149/1.2994629

    Article  CAS  Google Scholar 

  19. Z. Ye, Y. Yuan, H. Xu et al., Mechanism and origin of Hysteresis in Oxide Thin-Film Transistor and its application on 3-D nonvolatile memory. IEEE Trans. Electron. Devices. 64, 438–446 (2017). https://doi.org/10.1109/TED.2016.2641476

    Article  ADS  CAS  Google Scholar 

  20. K. Kandpal, N. Gupta, J. Singh, C. Shekhar, Study of ZnO / BST interface for thin-film transistor (TFT) applications. Surf. Interfaces. 23, 100996 (2021). https://doi.org/10.1016/j.surfin.2021.100996

    Article  CAS  Google Scholar 

  21. J.Y. Bak, S.J. Kim, C.W. Byun et al., Effects of thickness and geometric variations in the oxide gate stack on the nonvolatile memory behaviors of charge-trap memory thin-film transistors. Solid State Electron. 111, 153–160 (2015). https://doi.org/10.1016/j.sse.2015.06.003

    Article  ADS  CAS  Google Scholar 

  22. Y. Li, X. Huang, C. Liao et al., A dynamic current hysteresis model for IGZO-TFT. Solid State Electron. 197, 10–14 (2022). https://doi.org/10.1016/j.sse.2022.108459

    Article  CAS  Google Scholar 

  23. X. Ding, J. Zhang, J. Li et al., Influence of the InGaZnO channel layer thickness on the performance of thin film transistors. Superlattices Microstruct. 63, 70–78 (2013). https://doi.org/10.1016/j.spmi.2013.08.017

    Article  ADS  CAS  Google Scholar 

  24. C. Chen, K. Abe, H. Kumomi, J. Kanicki, Density of states of a-InGaZnO from temperature-dependent field-effect studies. IEEE Trans. Electron. Devices. 56, 1177–1183 (2009). https://doi.org/10.1109/TED.2009.2019157

    Article  ADS  CAS  Google Scholar 

  25. J. Martins, P. Bahubalindruni, A. Rovisco et al., Bias stress and temperature impact on InGaZnO TFTs and circuits. Mater. (Basel). 10, 1–10 (2017). https://doi.org/10.3390/ma10060680

    Article  CAS  Google Scholar 

  26. X. Cheng, S. Lee, R. Chaji, A. Nathan, Device-circuit interactions and impact on TFT circuit-system design. IEEE J. Emerg. Sel. Top. Circuits Syst. 7, 71–80 (2017). https://doi.org/10.1109/JETCAS.2016.2621348

    Article  ADS  Google Scholar 

  27. C. Huang, M. Chen, C. Yu, T. Wan, Dual functional photo-response for p-Si/SiO2/n-InGaZnO graphene nanocomposites photodiodes. Nanotechnology. 29, 505202 (2018). https://doi.org/10.1088/1361-6528/aae474

    Article  CAS  PubMed  Google Scholar 

  28. T.N. Nguyen, S. Jung, V.D. Nguyen, J. Yi, Memory characteristics of poly-Si using MIC as an active layer on glass substrates. J. Phys. D Appl. Phys. 43 (2010). https://doi.org/10.1088/0022-3727/43/10/105406

  29. N.C. Su, S.J. Wang, A. Chin, A nonvolatile InGaZnO charge-trapping-engineered flash memory with good retention characteristics. IEEE Electron. Device Lett. 31, 201–203 (2010). https://doi.org/10.1109/LED.2009.2037986

    Article  ADS  CAS  Google Scholar 

  30. Y.S. Park, S.Y. Lee, J.S. Lee, Nanofloating gate memory devices based on controlled metallic nanoparticle-embedded InGaZnO TFTs. IEEE Electron. Device Lett. 31, 1134–1136 (2010). https://doi.org/10.1109/LED.2010.2063013

    Article  ADS  CAS  Google Scholar 

  31. J. Jang, J.C. Park, D. Kong et al., Endurance characteristics of amorphous-InGaZnO transparent flash memory with gold nanocrystal storage layer. IEEE Trans. Electron. Devices. 58, 3940–3947 (2011). https://doi.org/10.1109/TED.2011.2164252

    Article  ADS  CAS  Google Scholar 

  32. S. Chen, X.M. Cui, S.J. Ding et al., Novel zn-doped Al2O3 charge storage medium for light-erasable in-Ga-Zn-O TFT memory. IEEE Electron. Device Lett. 34, 1008–1010 (2013). https://doi.org/10.1109/LED.2013.2266371

    Article  ADS  CAS  Google Scholar 

  33. J.Y. Bak, M.K. Ryu, S.H.K. Park et al., Impact of charge-trap layer conductivity control on device performances of top-gate memory thin-film transistors using IGZO channel and ZnO charge-trap layer. IEEE Trans. Electron. Devices. 61, 2404–2411 (2014). https://doi.org/10.1109/TED.2014.2318751

    Article  ADS  CAS  Google Scholar 

  34. W.P. Zhang, S.B. Qian, W.J. Liu et al., Novel multi-level cell TFT memory with an In-Ga-Zn-O Charge Storage Layer and Channel. IEEE Electron. Device Lett. 36, 1021–1023 (2015). https://doi.org/10.1109/LED.2015.2466084

    Article  ADS  CAS  Google Scholar 

  35. S.B. Qian, W.P. Zhang, W.J. Liu, S.J. Ding, (2015) Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack. AIP Adv 5:. https://doi.org/10.1063/1.4937422

  36. D.J. Yun, H.B. Kang, S.M. Yoon, Process optimization and device characterization of nonvolatile charge trap memory transistors using In-Ga-ZnO Thin films as both charge trap and active Channel Layers. IEEE Trans. Electron. Devices. 63, 3128–3134 (2016). https://doi.org/10.1109/TED.2016.2580220

    Article  ADS  CAS  Google Scholar 

  37. S.B. Qian, Y.P. Wang, Y. Shao et al., Plasma-assisted atomic layer deposition of high-density ni nanoparticles for amorphous In-Ga-Zn-O Thin Film Transistor Memory. Nanoscale Res. Lett. 12 (2017). https://doi.org/10.1186/s11671-017-1925-z

  38. M.K. Hota, F.H. Alshammari, K.N. Salama, H.N. Alshareef, Transparent flash memory using single Ta2O5 layer for both charge-trapping and tunneling dielectrics. ACS Appl. Mater. Interfaces. 9, 21856–21863 (2017). https://doi.org/10.1021/acsami.7b03078

    Article  CAS  PubMed  Google Scholar 

  39. D.D. Liu, W.J. Liu, J.X. Pei et al., Voltage-polarity Dependent Programming behaviors of Amorphous In–Ga–Zn–O Thin-Film Transistor memory with an atomic-layer-deposited ZnO charge trapping layer. Nanoscale Res. Lett. 14 (2019). https://doi.org/10.1186/s11671-019-3204-7

  40. N. Zhang, W. Zhao, C. Yao et al., Transparent multi-level NAND flash memory and circuits based on ZnO Thin Film Transistor. IEEE Electron. Device Lett. 44, 610–613 (2023). https://doi.org/10.1109/LED.2023.3248068

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

NA

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Binay Binod Kumar, Solid State Electronics and VLSI Design Lab, Department of ECE, NIT Jamshedpur, Jharkhand, carried out TCAD simulation reported in paper, manuscript preparation. Dr. Kunal Singh, Solid State Electronics and VLSI Design Lab, Department of ECE, NIT Jamshedpur, Jharkhand, final draft of manuscript check and made graphs

Corresponding author

Correspondence to Kunal Singh.

Ethics declarations

Ethics Approval

NA.

Consent to Participate

Yes.

Consent for Publication

Yes.

Competing Interests

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript. The following authors have affiliations with organizations with direct or indirect financial interest in the subject matter discussed in the manuscript: Binay Binod Kumar, Solid State Electronics and VLSI Lab, Department of ECE, NIT Jamshedpur, Jharkhand. Dr. Kunal Singh, Solid State Electronics and VLSI Lab, Department of ECE, NIT Jamshedpur, Jharkhand.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B.B., Singh, K. Consistent Performance ZnO TFT Based Single Transistor Nonvolatile Memory with Minimal Charge Loss. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00519-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00519-2

Keywords

Navigation