Skip to main content
Log in

Low-voltage-driven Pt/BiFeO3/DyScO3/p-Si-based metal–ferroelectric–insulator–semiconductor device for non-volatile memory

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, ferroelectric random access memory has drawn considerable attention as promising replacement to both dynamic random access memory and flash memory. Specifically in metal–ferroelectric–insulator–semiconductor (MFIS)-based structures, bi-stable polarization of ferroelectric gate even in absence of power holds the resistance state of semiconductor-drain channel between two logic states and offers additional features of non-destructive readout and non-volatile storage capability. However, insulating layer in such structure leads to high depolarizing field across FE layer and in turn high-voltage operation. In the present work, comprehensive performance of low-voltage-driven MFIS device, i.e., Pt (40 nm)/BiFeO3 (265 nm)/DyScO3 (6 nm)/Si is evaluated for gate voltage stress (± 2 to ± 9 V) at different thermal agitation (200–400 K). Fat capacitance–voltage (CV) hysteresis centered at zero bias with large memory window (ΔV FB) of 1.9 V at low operating voltage of ± 5 V, and stable data retention with distinguishable ON/OFF state values specifies strong charge storage potential of MFIS device in extreme conditions of ± 100 K. X-ray diffraction revealed polycrystalline and rhombohedral R3c phase of BiFeO3 film and out-of-plane piezoresponse force microscopy analysis showed the ultrafast domain switching with sharp contrast. Complete 180° phase reversal in hysteresis loop and bufferfly-shaped piezo-actuation amplitude loop further confirmed the enhanced ferroelectric properties of BiFeO3 thin films. Nonlinear JV curves of MFIS structure were investigated to understand the device reliability and charge transport mechanism. These encouraging results are crucial for designing more reliable integrated MFIS-based non-destructive readout non-volatile memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wong HSP, Salahuddin S (2015) Memory leads the way to better computing. Nat Nanotech 10:191–194

    Article  Google Scholar 

  2. Wen Z, Li C, Wu D, Li A, Ming N (2013) Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater 12:617–621

    Article  Google Scholar 

  3. Garcia V, Bibes M (2012) Electronics: inside story of ferroelectric memories. Nature 483:279–281

    Article  Google Scholar 

  4. Segal M (2009) Ferroelectric memory: slim fast. Nat Nanotech 4:405

    Article  Google Scholar 

  5. Scott JF, Araujo CAP (1989) Ferroelectric memories. Science 246:1400–1405

    Article  Google Scholar 

  6. Sakai S, Takahashi M (2010) Recent progress of ferroelectric-gate field-effect transistors and applications to nonvolatile logic and FeNAND flash memory. Materials 3:4950–4964

    Article  Google Scholar 

  7. Verma RM, Rao A, Singh BR (2014) Electrical characterization of the metal ferroelectric oxide semiconductor and metal ferroelectric nitride semiconductor gate stacks for ferroelectric field effect transistors. Appl Phys Lett 104:092907

    Article  Google Scholar 

  8. Kundu S, Maurya D, Clavel M, Zhou Y, Halder NN, Hudait MK, Banerji P, Priya S (2015) Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications. Sci Rep 5:8494

    Article  Google Scholar 

  9. Chen KH, Cheng CM, Lin CC, Tsai JH (2013) Fabrication and electrical characteristics of metal-ferroelectric Ba(Zr0.1Ti0.9)O3 film-insulator-silicon structure. Integr Ferroelectr 143:40–46

    Article  Google Scholar 

  10. Gupta S, Tomar M, Gupta V (2016) Ferroelectric photovoltaic response to structural transformations in doped BiFeO3 derivative thin films. Mater Des 105:296–300

    Article  Google Scholar 

  11. Wang L, Jin KJ, Gu JX et al (2014) A new non-destructive readout by using photo-recovered surface potential contrast. Sci Rep 4:6980

    Article  Google Scholar 

  12. Guo R, You L, Zhou Y, Lim ZS, Zou X, Chen L, Ramesh R, Wang J (2013) Non-volatile memory based on the ferroelectric photovoltaic effect. Nat Commun 4:1990

    Google Scholar 

  13. Murari NM, Thomas R, Pavunny SP, Calzada JR, Katiyar RS (2009) DyScO3 buffer layer for a performing metal-ferroelectric-insulator-semiconductor structure with multiferroic BiFeO3 thin film. Appl Phys Lett 94:142907

    Article  Google Scholar 

  14. Thomas R, Melgarejo RE, Pradhan DK, Karan NK, Saavedra-Arias JJ, Katiyar RS (2008) Metal-ferroelectric-insulator-semiconductor (MFIS) devices based on DyScO3 buffer layer and ferroelectric Bi3.25Nd0.75Ti3O12 thin film. ECS Trans 13:363–371

    Article  Google Scholar 

  15. Gupta S, Tomar M, Gupta V, James AR, Pal M, Guo R, Bhalla A (2014) Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film. J Appl Phys 115:234105

    Article  Google Scholar 

  16. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  Google Scholar 

  17. Gupta S, Medwal R, Limbu TB, Katiyar RK, Pavunny SP, Tomar M, Morell G, Gupta V, Katiyar RS (2015) Graphene/semiconductor silicon modified BiFeO3/ITO ferroelectric photovoltaic device for transparent self-powered windows. Appl Phys Lett 107(6):062902–062902.5

    Article  Google Scholar 

  18. Chen KY, Chu KL, Chen PH, Wu YH (2016) Ferroelectricity of low thermal-budget HfAlO x for devices with metal-ferroelectric-insulator-semiconductor structure. RSC Adv 6:74445–74452

    Article  Google Scholar 

  19. Lim M, Kalkur TS (1998) The role of leakage current on the memory window and memory retention in MFIS structure. Integr Ferroelectr 22:205–211

    Article  Google Scholar 

  20. Gerber A, Kohlstedt H, Fitsilis M, Waser R, Reece TJ, Ducharme S, Rije E (2006) Low-voltage operation of metal-ferroelectric-insulator-semiconductor diodes incorporating a ferroelectric polyvinylidene fluoride copolymer Langmuir–Blodgett film. J Appl Phys 100:024110

    Article  Google Scholar 

  21. Kawae T, Seto Y, Morimoto A (2013) Fabrication and characterization of metal-ferroelectric-insulator-semiconductor capacitor structure with ferroelectric (Bi, Pr)(Fe, Mn)O3 thin films. Jpn J Appl Phys 52:04CH03

    Article  Google Scholar 

  22. Koo SM, Khartsev SI, Zetterling CM, Grishin AM, Ostling M (2003) Processing and properties of ferroelectric Pb(Zr, Ti)O3/silicon carbide field-effect transistor. Integr Ferroelectr 57:1221–1231

    Google Scholar 

  23. Fujisawa H, Sugata M, Shimizu M, Niu H (2003) Characterization of MOCVD-TiO2 and ZrO2 insulating layers in MFIS structures by DLTS and ICTS methods. J Kor Phys Soc 42:S1354–S1356

    Google Scholar 

  24. Sugiyama H, Nakaiso T, Adachi Y, Noda M, Okuyama M (2000) An improvement in C–V characteristics of metal-ferroelectric-insulator-semiconductor structure for ferroelectric gate FET memory using a silicon nitride buffer layer. Jpn J Appl Phys 39:2131–2135

    Article  Google Scholar 

  25. Juan PC, Wang JL, Hsieh TY, Lin CL, Yang CM, Shye DC (2015) The physical and electrical characterizations of Cr-doped BiFeO3 ferroelectric thin films for nonvolatile memory applications. Microelectron Eng 138:86–90

    Article  Google Scholar 

  26. Lin CM, Shih WC, Chang IYK, Juan PC, Lee JYM (2009) Metal-ferroelectric (BiFeO3)-insulator (Y2O3)-semiconductor capacitors and field effect transistors for nonvolatile memory applications. Appl Phys Lett 94:142905

    Article  Google Scholar 

  27. Chiang YW, Wu JM (2007) Characterization of metal-ferroelectric (BiFeO3)-insulator (ZrO2)-silicon capacitors for nonvolatile memory applications. Appl Phys Lett 91:142103

    Article  Google Scholar 

  28. Noda M, Kodama K, Kitai S, Takahashi M, Kanashima T, Okuyama M (2003) Basic characteristics of metal-ferroelectric-insulator-semiconductor structure using a high-k PrO x insulator layer. J Appl Phys 93:4137

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from NSF Grant# NSF-RII-0701525 is acknowledged in carrying out the above work. S. G. is also thankful to DOD for providing financial assistance under the Grant #W911NF-11-1-0204.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rohit Medwal or Surbhi Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medwal, R., Gupta, S., Pavunny, S.P. et al. Low-voltage-driven Pt/BiFeO3/DyScO3/p-Si-based metal–ferroelectric–insulator–semiconductor device for non-volatile memory. J Mater Sci 53, 4274–4282 (2018). https://doi.org/10.1007/s10853-017-1828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1828-5

Keywords

Navigation